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Abstract

Originally written in 1991 to advance the formal analysis of forecasting models and meth-
ods, the report considers alternative forecasting devices including guessing, extrapolating,
leading indicators, surveys, time-series models and econometric systems. Conditional and
unconditional forecasts are reviewed and the issue of data accuracy is discussed. The main
focus is on macro-econometric model forecasts and their forecast errors, so forecast variances
are described. Forecast comparisons using mean square errors across models are criticized,
as are methods of pooling disparate forecasts, which violate forecast encompassing. The
non-stationarity of economic data is discussed in terms of unit roots and stochastic trends,
technical progress and regime shifts. The various sources of forecast error are delineated
including: uncertainty about parameters and non-modelled variables; cumulative innovation
errors in forecasting endogenous variables; lagged feedbacks onto exogenous variables, pa-
rameter non-constancy; incorrect initial values; and model mis-specifications. The report
concludes with some recommendations.
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Prologue

This paper was originally written in 1991 as a report in my role as Special Advisor to the Trea-
sury and Civil Service Select Committee on Economic Forecasting. The overall reports of such
committees are usually published by Her Majesty’s Stationery Office (HMSO), and I had thought
my report had been included, and indeed had recorded it as such till recently when Neil Ericsson
discovered that it had not appeared. At his invitation, I have recreated the report from his scanned
copy of the original, as a precursor to my research on forecasting over the next 25 years, and
recording much of what was known about forecasting at the time.1 Sections 9–18 were originally
a technical appendix, and have been left after the original main text, but are now numbered sequen-
tially. The conclusion has been moved to the end of the original report. The Epilogue comments
on what led to useful developments, what I missed and what I misunderstood at the time. Publica-
tions in the body of the text dated later than July 1991 were either working papers or forthcoming
at the time of the report, and have been updated; publications in the Epilogue since the report was
originally written are under ‘Added References’.

1 Introduction and summary

This report first discusses alternative forecasting methods used in economic forecasting. The term
forecast is used to denote a statement about a future event or set of events; prediction is used to
denote an implication of a model, so forecasts are a sub-class of predictions. Of the possible fore-
casting methods available, macro-econometric models are the focus of interest here, and section 2
explains why. Next, the two possible forms of forecast, namely conditional on some other events

1I am grateful to Jennifer L. Castle and Neil R. Ericsson for many corrections arising from this recreation. Footnotes
have been added to clarify some issues in the original, though are somewhat anachronistic.
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occurring (e.g., no change in oil prices) or unconditional, are described in Section 3. Most H.M.
Treasury forecasts are conditional, so the analysis will be restricted to those. In section 4, the
issue of data accuracy is discussed. The basic formulae for forecasting, forecast errors and fore-
cast variances are described in section 5. The properties of these are important in appraising both
the limits to forecastability and possible improvements in forecasting. Section 6 discusses mean
square forecast errors and forecast comparisons across models. This introduces the topics of pool-
ing of forecasts and the obverse of forecast encompassing, which concerns whether the forecasts
of one model can explain the forecast errors made by another. Any need to pool forecasts from
distinct sources entails model mis-specification.

Section 7 considers the effects of various forms of non-stationarity in economics data. The pur-
pose of this section is to highlight when forecasts are feasible and contain genuine information, and
when in an appropriate transformation, forecasts have no information content. An example based
on computer generated data is used to illustrate the effects of certain kinds of non-stationarity. The
key concept of cointegration is explained and a range of graphs show the need to forecast non-
integrated components to correctly appraise forecasts. Section 8 describes and analyses sources
of forecast error and suggests a number of potential improvements to current practices. There are
eight major sources of error, none of which can be removed in its entirety, but all of which can
be partially mitigated by good practice. The limits to forecastability and the roles of initial condi-
tions and intercept corrections are also discussed. The problem that forecast confidence intervals
are non-monotonic in the forecast horizon is noted, and forecast frequency and the use of annual
average forecasts are discussed. Some criticisms are made of existing practices.

A formal treatment of forecasting by linear macro-econometric models is presented in what
was originally the technical appendix. Key issues discussed include non-stationarity (§9), exo-
geneity (§10), structural econometric models (§11), cointegration in systems and models (§12),
regime shifts and parameter changes (§13), encompassing (§14), and system and conditional dy-
namic forecasts (§15–§16) including the calculation of forecast confidence intervals. Section 17
provides brief comments on the role of non-linearity and a description of the artificial example
used is in section 18. Section 19 concludes the report and notes a number of recommendations.

Issues of model size and aggregation are not investigated here as there are no useful points
I can make. My intuition suggests that for a restricted budget allocation, the larger the model
beyond the minimum size needed to forecast the main macroeconomic aggregates, the poorer its
equations and hence the poorer the forecasts. Historical track records are not discussed either,
for the same reason: moreover the Warwick Bureau is in a much better position than myself to
comment on such matters. Finally seasonality is not considered: for recent results, see Ericsson
et al. (1994). The funding of research into macroeconomic models recently has been severely
curtailed by budget restrictions at the Economic and Social Research Council. The latest round of
the Macroeconomics Consortium, who supported most of the research underpinning this report,
has meant the termination of finance for all researchers in this area other than the actual modelling
teams. I believe this to be a disastrous degeneration of an already parlous situation. Had the Select
Committee met a year later, I would have had no support to help their enquiry.

2 Alternative forecasting methods

There are many ways of making forecasts ranging from [a] guessing; [b] extrapolating recent ten-
dencies; [c] leading indicators; [d] surveys of plans and anticipations by consumers and business;
[e] time-series models; through to [f] formal econometric systems. Irrespective of the method
selected, three ingredients are essential to success: that there are regularities to capture; that the
selected method captures them; and that such regularities are informative about the future.

[a] Guessing
This approach relies on luck, and can be ruled out as a generally useful method, even if at any
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point in time, some ‘oracle’ claims to be able to forecast accurately. The flaw of this method is
that one cannot predict which oracle will be successful.

[b] Extrapolation
This method is fine so long as the perceived tendencies do indeed persist, but the likelihood of that
is itself in doubt. Here the telling feature is that different exrapolators are used at different points
in time.

[c] Leading indicators
Forecasting based on indicators is undergoing a surprising revival of interest: see Stock and Wat-
son (1989). Unfortunately, it remains unreliable unless the reasons for the apparent link of the past
to the future are clear, as with, say, orders preceding production. Also, most indicators undergo
regular changes in composition. The best - worst? - examples are the Harvard Barometer A-B-C
curves and models which try to predict from nonsense relationships (see Coen et al., 1969).

[d] Surveys
Sample surveys of plans and anticipations by consumers and business might be informative, but
much more research is needed on the extent to which plans are realized, and if not, what explains
the departures from the plans. Presently, they seem at best an adjunct to formal methods, not a
substitute, and below we comment on linking distinct forecasting methods.

[e] Time-series models
These usually are of the form proposed by Box and Jenkins (1976). Historically, they have per-
formed well relative to econometric methods. Much of this apparent success is due to dynamic
mis-specification in econometric models, and such a source of error was greatly reduced during
the 1980s as modern methods were adopted. The multivariate successor to Box–Jenkins is the
Vector Autoregressive Representation (VAR), and in the U.S.A., this approach has claimed suc-
cess. In the appendix, we demonstrate a role for VARs in model evaluation, but dismiss them as
forecasting devices per se. Because economics data are integrated – as discussed in section 7 –
VARs must be expressed in changes and hence omit crucial error-correction feedbacks.

[f] Econometric systems
Formal econometric systems of national economies seem the only hopeful road. These consolidate
existing empirical and theoretical knowledge of how economies function, provide a framework
for a progressive research strategy for improving forecasting, and help explain their own failures.
Moreover, they are open to adversarial scrutiny and so offer a scientific basis for research. In
particular, only [e] and [f] allow well based derivations of measures of forecast uncertainty, and
associated tests of forecast adequacy. Nevertheless, to be useful, macro-econometric models must:
(i) be well specified, which requires an evaluation of their congruence, namely, how closely the
models embody the available data information;
(ii) dominate alternatives, which is their encompassing ability, namely their ability to account for
the results obtained by rival explanations;
(iii) remain constant even when economic policies change, which is their invariance to regime
shifts and structural change.

Sections 9–16 consider these aspects for [f], criticize some present practices, point out impor-
tant developments in forecasting theory, and briefly describe how (i)-(iii) can be evaluated relative
to the requirements for success in forecasting.

3 Conditional versus unconditional forecasting

A conditional forecast is a statement about future events which takes other events as given. For
example, ‘England will win the fourth test if Ambrose is ill’. An unconditional forecast averages
across alternative possible future states of nature, taking only the past as given. For example,
if conditionally GNP is expected to grow at 2% if no war occurs, and 4% if one does, and the
probability of a war is 0.1, then the unconditional forecast is: 0.9x 2% + 0.1x4% = 2.2%. This is a
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sensible forecast of what would happen on average across many such scenarios; it is a silly forecast
of the outcome in any specific instance, since either 2% or 4% will eventuate, not something in
between. Thus, an unconditional forecast is akin to the statement that the average family size is
2.4 individuals.

If the purpose of a forecast is as an input to a governmental policy decision (e.g., whether to
lower interest rates), then several conditional forecasts are required, namely with and without the
policy change implemented. Such exercises are often called scenario studies. At most one of the
outcomes will eventuate, and so conditional forecasts are needed. However, for an investment in a
new mine, say, an unconditional forecast averaged across a wide range of states of nature may be
preferred.

Most Treasury forecasts are conditional. An important issue, therefore, is the choice of the
conditioning variables. In particular, invalid conditioning can occur where variables which will
be altered by a policy change resulting from a forecast are nevertheless treated as given. This
invalidity derives from feedbacks of the forecast variables onto the supposedly given values of the
future variables: see section 8 below.

4 Data accuracy

The accuracy of the data influences forecast performance in many ways. Poor samples of data may
lead to poor model choices, poor parameter estimates, and increased forecast uncertainty from the
errors on the model. Poor baseline data may lead to inaccurate forecasts by indicating a false state
of the initial conditions of the economy. Later poor data may lead to weak model evaluation and
perhaps invalid inferences about model adequacy.

These difficulties are compounded by data revisions, index rebasings and inconsistencies be-
tween series. The first can reverse decisions about model adequacy, especially when they are as
large as the current regular revisions to the national accounts. Rebasing price indices in an evolving
world can induce failures to reveal important links between time series: specifically, cointegration
between series in constant prices may be masked by price revisions being integrated. Data incon-
sistencies, however, allow the possibility that econometric models could forecast more accurately
than the data are measured. Most of the rest of this report treats the data as a given, and of sufficient
accuracy not to seriously contaminate forecasts. A sufficient justification is that the data errors are
no larger on average than the measured growth rates of the variables: see section 8 below.

5 Forecasts, forecast errors and forecast variances

Among the most basic regularities to be captured in economics are the means and the variances of
suitably transformed variables. Such entities are constant and well defined only if the time series of
the variables are stationary, which is to say that they ‘look alike’ in different epochs. Stationarity
played a dominant role in econometrics until the late 1970s despite criticisms dating from 1901.2

To understand that concept, some formalization is essential. The obverse of non-stationarity will
later help to clarify the notion of stationarity. Consider an efficient financial market, where if a
forecast of a change were feasible, then large profits could be made by suitable speculation. For
example, imagine knowing that the £/$ exchange rate, one week ahead, was going to be 10%
higher than its present value. Denote a change in a variable xt at time t by ∆xt = xt − xt−1, then
we would not expect that change to be forecastable in a financial market (indeed contradictions can
ensue otherwise). Technically, we denote an expected value or average by E, so that an inability

2Although these references were known at the time, they have been added here in 2018: see e.g., Hooker (1901) and
Yule (1926).
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to predict a change is expressed as E[∆xt] = 0: in words, the expected change is zero. The actual
change is random, being upwards or downwards due to the market participants’ views, so that:

∆xt = ϵt (1)

so xt = xt−1 + ϵt where ϵt is a random variable with a zero mean, assumed to be independent in
successive periods (or else it could be predicted), and approximately normally distributed. This
set of assumptions is denoted by IN[0, σ2ϵ ] where σ2ϵ is the variance of ϵt. A normally distributed
variable has a 68% chance of lying within ±σϵ of the mean, a 95% chance of lying within ±2σϵ of
the mean, and is almost certain to lie within ±4σϵ of the mean, which is the interval (−4σϵ, +4σϵ).
When xt is the exchange rate, σϵ is about 5% of x on quarterly data, so the previous sentence
entails that the exchange rate almost never changes by more than ±20% between quarters.

On several widely accepted criteria, the expected value is the best point forecast of a random
variable with a finite mean. In particular, no other linear unbiased predictor exists which is always
better. Thus, and again hardly startling, the best forecast of ϵt+1 in (1), given the history of the
series, is its mean of zero.

A process like (1) is a difference, or dynamic, equation and is said to have a unit root because
the coefficient of xt−1 is unity. This makes it non-stationary, in that the mean and variance of xt
are not constant over time. To develop this idea, consider the slightly more general model:

xt = d0 + d1xt−1 + νt (2)

where νt ∼ IN[0, σ2ν ]. For simplicity, {νt} is taken to be an autonomous normal random variable
with zero mean and constant variance σ2ν , where the successive νs (nus= ‘news’) are independent.
Here, autonomous means that the error is not affected by the economic events being modelled, but
does affect them. Such an error is also called an innovation since it is unpredictable given available
information (otherwise it would not be news).

The values of d0 and d1 determine the properties of xt and very different sequences of {xt}
result as the parameter values change. The stationary case occurs if −1 < d1 < 1. Then xt is
a stationary process, which fluctuates around a mean of E[xt] = d0/(1 − d1) with a variance of
V[xt] = σ2ν/(1 − d21). The correlation between successive xs is determined by d1. If the future
starts at time T + 1, a forecast of xT+1 can be calculated by:

x̂T+1 = d̂0 + d̂1xT (3)

using estimated parameters in practice. This is the conditional mean of next period’s x given xT
denoted by E[xT+1|xT ] = d0 + d1xT . The forecast error for estimated parameter values is:

ν̂T+1 = xT+1 − x̂T+1 = νT+1 + (d0 − d̂0) + (d1 − d̂1)xT (4)

The variance of the forecast error V[ν̂T+1] is:

V[ν̂T+1] = σ2ν + V[d̂0] + V[d̂1]x
2
T + 2C[d̂0, d̂1]xT (5)

Four components play a role in (5): the variance σ2ν of the innovation; the variances and covari-
ances of the estimated parameters V[d̂0], V[d̂1] and C[d̂0, d̂1]; and the initial condition xT and its
square x2T . These are all discussed in more detail in section 8. When the parameters are known,
V[ν̂T+1] = σ2ν , which is also the conditional variance V[x̂T+1|xT ], is less than the unconditional
data variance:

V[xT+1] = σ2ν/(1− d21) (6)

Otherwise, for estimated parameters, (5) could be larger than (6): see Chong and Hendry (1986).
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To forecast further ahead, say h periods, (2) must be solved backwards from time T + h:3

x̂T+h = d0 + d1xT+h−1 (7)

Assuming the expectations of future νs are all zero, the ‘best’ forecast of x at time T + h in terms
of the information available at the start of the forecast period T is given by:

x̂T+h = d0(1− dh1)/(1− d1) + dh1xT (8)

This is the conditional mean of x at time T + h given x at time T . As h increases, dh1 tends to
zero since d1 is smaller than unity in absolute value. Thus, eventually, the forecast becomes the
unconditional mean d0/(1− d1). In this sense, stationary processes are well behaved.

Even for known parameter values, the multi-period forecast error variance formula becomes
more complicated, but it merits note because of the important role it plays in the feasibility of
forecasting:

ν̂T+h = xT+h − x̂T+h (9)

so that:
V[ν̂T+h] = σ2ν(1− d2h1 )/(1− d21) (10)

V[ν̂T+h] is also V[xT+h|xT ], and from (10), it increases with h, sometimes very rapidly: if d1
is 0.95, then V[ν̂T+8]/V[ν̂T ] = 3.5 rising to over 10-fold as h increases. Alternatively, if d1
is zero, future values of x cannot be predicted any better than their unconditional mean so that
larger values of d1 ensure more predictability. However, if d1 is unity, the change in x cannot be
predicted beyond its unconditional mean, since (2) then coincides with (1).

These formulae all assume that the forecast uncertainty itself does not alter over time. There
are many models of error processes that allow changing variances to occur, of which the most
popular is the autoregressive conditional heteroscedastic (ARCH) model due to Engle (1982).
However, the empirical evidence in any given case must be the arbiter of the need for such an
additional phenomenon, and no issue of principle is involved. The formulae above are basic to
forecasting, but in practice must be extended to allow for a variety of complications, as follows:
forecasting is usually undertaken from a system; there are non-modelled variables which must be
separately forecast; the system is usually non-linear and involves longer lagged reactions than just
one period; parameter estimates may be rather uncertain; the initial conditions are subject to error
and revision; the model may not characterize the data to within an innovation error; parameter
values may change in the forecast period; and operational forecasts may be modified judgemen-
tally. Nevertheless, most of the salient issues arise in the simple case just discussed. A discussion
of the various sources of forecast errors is provided in section 8, and sections 9–16 offer a formal
analysis.

Econometric systems derive their predictive power from the inertial dynamics of the economy
being regular. This power is enhanced or attenuated by the information on outside variables and
any judgement. Section 7 discusses factors which reduce predictability, of which various non-
stationarities are the most important, and section 9 also considers that issue formally.

6 Forecast comparisons

Forecasts from large models reflect the judgments, corrections and inputs of their proprietors as
much as the models’ properties, so that forecast track records reveal little about model validity.
When pure forecast information is available, measures of forecast uncertainty are needed to test
model validity, but are rarely provided. Thus, forecast comparisons are often based on mean square
forecast errors.

3Assuming known parameters here.
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[a] Mean square forecast error
The mean square forecast error (MSFE) from a model for a time t+hmade at time t < T (to allow
its calculation) is E[(xt+h− x̂t+h)

2], which combines the bias in forecast errors, namely E[xt+h−
x̂t+h] = E[ν̂T+h] with the forecast error variance, namely V[ν̂T+h] = E[(ν̂T+h − E[ν̂T+h])

2].
MSFE is used in both forecast evaluations and for forecast comparisons across models. At first
sight, it seems a demanding criterion for a minimum MSFE in a class. Unfortunately, this is not
so: it is neither necessary nor sufficient that the model have valid exogeneity, constant parameters,
nor provide accurate forecasts, all of which one might deem vital concerns for a model to be used
in policy. Encompassing ensures MSFE dominance, but not conversely, and together with tests
of parameter constancy and the validity of conditioning help to check for model validity. We now
briefly consider forecast encompassing evaluations.

[b] Pooling of forecasts and forecast encompassing
Tests for forecast encompassing concern whether the forecasts of one model can explain the fore-
cast errors made by another. They were proposed by Chong and Hendry (1986) as a feasible way
to evaluate large-scale econometric models. Ericsson (1992) and Lu and Mizon (1991) discuss
the relative merits of forecast encompassing test statistics and parameter constancy tests. They
establish that forecast encompassing entails MSFE dominance so that any need to pool forecasts
from disparate sources is indicative of model mis-specification.

Generally if x̂t denotes the forecast from model 1, denoted M1, and x̃t is a forecast from M2,
then the pooled forecast is:

x̄t = (1− a1)x̂t + a1x̃t (11)

It cannot be shown that this is a sensible way to handle information: two bad models are unlikely to
combine on a systematic basis to produce good forecasts. It is much better to sort out the models.
Indeed, if the forecast error from M1 is given by xt− x̂t = ût, and from M2 by xt− x̃t = ũt then:

xt − x̄t = xt − x̂t + a1(x̂t − x̃t) = ût + a1(ût − ũt) = ūt (12)

(say), so that V[ūt] < V[ût] only if a1 ̸= 0. If so, then the difference in the forecast errors of the
two models can help explain the forecast errors of model 1. Thus, M1 is a poor model.

7 Non-stationarity

There are three distinct and important kinds of non-stationarity in economics: [a] Unit roots and
stochastic trends, which potentially can be offset by cointegration; [b] Technical progress and
structural change; [c] Regime shifts and structural breaks.

[7.a] Unit roots and stochastic trends

In this case, relative to (2), d1 = 1 and xt is a random walk, with drift if d0 ̸= 0:

xt = d0 + xt−1 + νt (13)

which implies that ∆xt = d0 + νt. First consider d0 = 0, so that ∆xt = νt as in (1). We can
express xt as a function of past νs:

xt = x0 +
t∑

j=1

νj (14)

Thus, past shocks do not die out and appear to persist for ever. The variance of xt increases
linearly over time and xt ‘wanders’ everywhere eventually. Over millennia, this seems an unlikely
description of economic variables, many of which have bounds, and most of which do not need to
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have constant variance inputs, but locally it is a fair first approximation to many (e.g., asset prices).
If d0 ̸= 0 then xt also has a constant drift, since in place of (14) we find:

xt = x0 + d0t+

t∑
j=1

νj (15)

This class is often called difference stationary since its first difference is a stationary process. Now,
E[xt] = x0 + d0t, and so trends over time. This contrasts with the conditional mean of xt+1 given
xt, which is always d0 + xt.

The conditional variance for known parameters is V[xt+1|xt] = σ2ν . However, the uncon-
ditional variance is V[xt] = σ2νt, which trends making distant forecasts of the level completely
unreliable. The correlation between successive xts is almost unity. The h step ahead forecast from
time T is:

xT+h = d0 + xT+h−1 + νT+h = d0 + (d0 + xT+h−2 + νT+h−1) + νT+h

= 2d0 + xT+h−2 + νT+h−1 + νT+h = · · · = d0h+ xT +

h−1∑
i=0

νT+h−i (16)

Thus, the deviation of the variable from the initial condition has a local trend, and a cumulative
error. Conversely, from (13), one-step ahead changes cannot be forecast more accurately than their
unconditional mean d0.

It is important to note that σ2ν/V[xt] will tend to zero over time, so that compared to the level
of the economic variable, distant forecasts will appear to be useful, even when there is no forecast
accuracy for changes.

The model in (13) is non-stationary, and is the focus of much current research in econometrics:
see inter alia, Dickey and Fuller (1979)(1981), Phillips and Durlauf (1986), Park and Phillips
(1988)(1989) and Sims et al. (1990). The behaviour of estimation methods and statistical tests is
greatly affected by whether variables are stationary or not, more specifically, whether or not unit
roots occur, and if so, how many are present. Since xt in (14) cumulates, or integrates, past shocks,
but does so only once, it is usually denoted I(1), called integrated of order one. If xt is I(1), then
∆xt is I(0), so first differences remove the unit root or integrator. Thus, xt in (2) is I(0). Economic
processes could potentially be I(d), and need ∆d to remove all of their unit roots. Equally, their
degree of integration is not an inherent characteristic and could change over time (e.g., prices in
hyper-inflations). However, many economic time series seem to be I(1).

Cointegration

An important possibility is that linear combinations of I(1) variables could be I(0) because of
‘cointegration’: see Engle and Granger (1987). A simple example is if consumptionCt and income
Yt are I(1) but saving St = Yt − Ct is I(0), then consumption and income are cointegrated. This
example is not empirically reasonable, merely illustrative. Cointegrating relationships are those
that hold in the long run: despite levels of variables changing without bound, combinations of
variables move together.

To illustrate the main ideas and concepts, a set of (quarterly) data was generated on a computer
to mimic the time-series properties of macroeconomics data, artificially dated as 1950(1)–1991(1).
The mechanism by which the data were created is, therefore, known to the author. The data are
named ‘consumption’, ‘income’ and ‘saving’ to provide a concrete analog, but have no direct
relationship to the series of these names in the U.K. Section 18 records the computer-based model
and some of its properties. The main points of interest for this section are that the changes in
the ‘income’ series satisfy a model like (2) with d1 = 0.5; that ‘consumption’ is determined by
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‘income’ and lagged ‘saving’ such that ‘consumption’ and ‘income’ are cointegrated; and that
‘saving’ is stationary.

Figure 1 shows the time series for the level of ‘income’, together with the fitted values from
the estimated econometric system. The fit appears to be spectacularly good, with both the trend
and the minor cycle being accurately tracked.

actual 
fitted 

1950 1955 1960 1965 1970 1975 1980 1985 1990

5

10

15

actual 
fitted 

Figure 1: Fitted and actual values for ‘income’.

Figure 2 transposes the same information to a graph of the change in ‘income’, denoted
∆‘income’t: clear departures between the fitted and actual values are now apparent and although
the track remains good, the correlation between fitted values and outcomes is only 0.5, consistent
with the variance of the error.

actual ∆‘income’t 
fitted 

1950 1955 1960 1965 1970 1975 1980 1985 1990

0.1

0.2 actual ∆‘income’t 
fitted 

Figure 2: Fitted and actual values for ∆‘income’t=‘income’t−‘income’t−1.

Figure 3 records a similar graph for ‘saving’: again the tracking is excellent, and the ‘look
alike’ feature at different points in the sample is reasonably clear.

Given the data on the levels of these three time series, empirical modelling determines one
cointegrating link, approximately that ‘saving’ = ‘income’-‘consumption’; one non-stationary
combination, which represents the stochastic trend; and one identity. The first two are shown
in Figure 4, matched by their mean values for clarity. The large range of the latter from −3 to +3
swamps the former, which has a range of −0.2 to +.25, as seen in Figure 3.

One-step ahead forecasts from the model, based on a succession of steps like those in (3), are
shown for ‘saving’ in Figure 5 over the final eight observations. The 95% interval forecasts are
shown by the vertical error bars, centered on the forecasts. These measures correctly reflect the
uncertainty due to the equation’s innovation error and to the fact that the parameter values have
been estimated. All of the realized outcomes lie within their associated confidence interval, and
there is little change in the size of the vertical bars as the forecast period advances.
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Figure 3: Fitted and actual values for ‘saving’.
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Figure 4: Time series of the cointegrating linear combination (approximately ‘saving’) and the
stochastic trend (non-cointegrating combination).
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Figure 5: Eight 1-step ahead forecasts of ‘saving’ over 1991(2)–1993(1) with the artificially gen-
erated outcomes.
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In many respects, this is an ideal illustration since the model passes all the tests of the adequacy
of its specification, explains most of the variation in the data, and does not suffer from any of the
practical difficulties of measurement errors, parameter change or unmodelled variables. Thus,
Figure 6 might be an unpleasant surprise.

8-year ahead forecasts of ‘consumption’ 
‘consumption’ 

1975 1980 1985 1990 1995 2000

14

16

18

20

22 ← in-sample period → ← forecast period →

 ↑ 
95% interval
forecasts

8-year ahead forecasts of ‘consumption’ 
‘consumption’ 

Figure 6: Eight-year ahead forecasts of ‘consumption’ over 1991(1)–1999(1) with 95% interval
forecasts.

Figure 6 reports the multi-step, or dynamic, forecasts for ‘consumption’ analogous to (8)
above, together with the 95% interval forecast bars, which reflect mainly the cumulative uncer-
tainty due to the innovation error. The huge increase in the interval forecasts is obvious: they
trend upwards, and at 32 periods ahead – corresponding to 8 years of quarterly data – span a range
almost as large as that of the previous 60 data observations. That range is about 3.2 units, whereas
‘saving’ never varies outside ±0.3. The mean forecast quickly becomes a trend since the data
are non-stationary, and the forecasts are almost uninformative after 10 periods due to the large
variances.

Either a large recession or a major boom would be compatible with the interval forecasts cal-
culated. Such a statement holds despite these intervals seriously underestimating the uncertainty
likely to be present in any realistic setting, as the model coincides with the mechanism which
generated the data. Figure 7 reports eight-year ahead forecasts for a recession scenario of ‘con-
sumption’ induced by a fall increasing to 5% at the end of the period. This leads to a marked fall
in final period ‘consumption’ relative to the central forecast, but nevertheless lies entirely within
the 95% interval forecast bars. The social welfare of the two outcomes is very different (cumulat-
ing to a loss of almost half-a-year of ‘consumption’), although statistically the two paths are not
significantly distinct.

However, the usual reporting mode for a central forecast is shown in Figure 8, namely the
central trend without any indices of uncertainty. It may look impressive, but Figures 6 and 7
reveal how uncertain the real environment is. A reasonable idea of the uncertainties inherent in
predictions could help produce better policy, and more informed discussion thereof.

Figure 9 records the forecast information in terms of the change in ‘consumption’. The forecast
variances rapidly converge to a constant, spanning about 0.2, which matches the range of the
observed changes in consumption over the previous sample. The forecasts reveal a return of the
growth rate to its unconditional mean after a few periods, where it then settles. This is in line with
the calculations of forecastability presented in section 18.

Finally, Figure 10 shows the forecast behaviour for ‘saving’, which is the difference between
the two non-stationary series, rather than the change in either. Nevertheless, the outcome is similar
to that in Figure 9: the forecast variances rapidly stabilize; there is some information up to about 6
periods ahead; but thereafter, conditional forecasts are no better – at best – than the unconditional,
or long-run, mean and variance.
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Figure 7: Eight-year ahead forecasts of ‘consumption’ with 95% interval forecasts and an alterna-
tive future trajectory over 1991(1)–1999(1).
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Figure 8: Eight-year ahead forecasts of ‘consumption’ over 1991(1)–1999(1) with no interval
forecasts.
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Figure 9: Eight-year ahead forecasts of ∆‘consumption’ over 1991(1)–1999(1) with 95% interval
forecasts.
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Figure 10: Eight-year ahead forecasts of ‘saving’ over 1991(1)–1999(1) with 95% interval fore-
casts.

We return to the system case in section 18, but otherwise it is too technical to analyze further
here. However, that section does record the formulae needed to calculate the statistics reported in
the graphs (the data were originally generated by PC-NAIVE–see Hendry et al., 1991–and were
analyzed and graphed by PC-GIVE–see Hendry, 1989: here OxMetrics was used, Doornik, 2018,
with PcGive generating and analyzing the data, Doornik and Hendry, 2018).

[7.b] Technical progress and structural change

The model in equation (13) also describes the phenomenon of economic growth, and is one method
of modelling technical progress, when it is random but cumulative. What is not captured is the
learning and adjustment processes associated with inventions and the implementation of innova-
tions. The main engines of economic growth are the cumulation of knowledge, and its embodiment
in human and physical capital. These are inherently non-stationary processes like those in [7.a].
Econometric systems must also model such features to the extent that they occurred in the sample
data, and be modified post-sample for any anticipated changes.

For example, the introduction of interest-bearing sight deposits was a major financial innova-
tion which radically altered the opportunity cost of keeping idle balances in chequing accounts.
Appropriate adjustments, taking account of learning, could have been made ex ante to achieve
vastly superior forecasts of £M1: see Hendry and Ericsson (1991) for discussion.

[7.c] Regime shifts and structural breaks

Phenomena such as changes in monetary, fiscal or exchange rate policy, oil crises, major innova-
tions like personal computers, the creation of new types of financial assets etc. are better viewed
as structural breaks. The occurrence and timing of these is hard to predict but their effects can be
modelled, and sometimes anticipated. Sufficiently major changes in one sector which induce pre-
dictive failure in a different sector of a model reveal it to have been mis-specified. The so-called
‘Lucas critique’ (see Lucas, 1976, originally due to Frisch, 1938) is discussed in section 14.

8 Sources of forecast error

There are eight sources of forecast error discussed in detail in section 16. To minimize the techni-
cality of the discussion, some of the verbal discussion is left without the mathematical caveats that
would be present in an academic article, but I do not think that any very misleading implications
arise thereby.
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a] The innovation error;
b] cumulative mistakes in forecasting endogenous variables;
c] parameter uncertainty;
d] non-modelled variables;
e] endogenous feedbacks onto variables treated as given;
f] parameters which are assumed constant but alter;
g] incorrectly measured initial values within sample;
h] incorrect specification of the model for the economic mechanism.
We discuss these in turn.

[a] The innovation error
The innovation error in a model is not that of the economy, but is created by the design of the
model. Thus, it can be reduced, but only so far as the information set allows, and in the limit,
to that inherent in the world economy. In practice, many models have errors which are not even
innovations against their own information, and hence they can be improved by better modelling
(e.g., by not imposing ‘theoretically plausible’ but data-rejected constraints); better methodology
(e.g., general-to-simple) and larger data bank sources of information. Many useful economic time
series for econometric modelling were thoughtlessly cut out by the Rayner review, and many other
potentially useful data series are not collected. We greatly underspend on data collection relative
to the likely benefits of better information.

[b] Cumulative mistakes in forecasting endogenous variables
The cumulative errors due to successively forecasting endogenous variables cannot be overcome
in principle; it is unreasonable to imagine that the future evolution of non-stationary dynamic
mechanisms can be predicted beyond a few periods ahead. The best that can be achieved here is
the accuracy attainable from knowledge of the mechanism itself, which is in effect what section
16 below shows

For I(0) transforms, such an error source is bounded by the unconditional variance. However,
for the level of the economy (i.e., its scale), the variance is unbounded. In words, anything is
possible in the indefinite future: imagine the level and composition of GNP today had the Industrial
Revolution not occurred. Fortunately, only a few periods ahead are usually necessary for economic
policy of a stabilization form (e.g., 4–6 quarters), and only medium-term averages are needed for
growth and investment strategies such as education and infrastructure. Again, this is illustrated in
section 16.

[c] Parameter uncertainty
Reducing parameter uncertainty requires better measured and longer samples of data; better meth-
ods of estimation; better economic insights; better specifications; and more parsimonious explana-
tions. However, better data alone are not a panacea. When economics variables are non-stationary,
their variances grow over time as shown in section 7. It is also unreasonable to model measurement
errors as growing relative to measured growth rates: if we measure GNP as growing at 4%, it may
be growing at 2% or even 6%, but it is not likely to be growing at 4000%. Thus, in a cointegrated
system, measurement error variances will be bounded relative to long-run relationships, so they
mainly affect the short-run dynamics. This still matters for forecasting, and hence any attempted
stabilization policy, but is less relevant for medium-term planning.

When parameter values are uncertain, in I(0) processes, correct forecast confidence intervals
may be non-monotonic in the horizon: as the horizon of the forecast increases, the confidence band
first expands then contracts. Since it must end up at the unconditional variance, conditional dy-
namic forecasts can have larger variances than unconditional. This allows some scope for pooling
or averaging of forecasts, especially between unconditional and conditional predictors.

[d] Non-modelled variables
Non-modelled variable uncertainty can only be reduced by devoting greater resources to modelling
the ‘exogenous’ and policy variables; having a better feel for what the future will bring forth; and
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taking account of extraneous information on their likely evolution. Survey information has a
potentially useful role in improving ‘off-line’ forecasting. Of course, the situation is very different
for the Treasury than for outside agencies as regards information about the future path of economic
policy variables, so the Treasury should be able to out perform most outside forecasters, ceteris
paribus. We now turn to what section 16 calls the hidden sources of error.

[e] Endogenous feedbacks onto variables treated as given
Lagged feedbacks of the endogenous variables on to the non-modelled variables, namely those
which are treated as given, is called Granger causality in economics (see Granger, 1969). Such
feedbacks violate conditioning on future non-modelled variables, but are testable from sample
information. Very misleading forecasts can result in the worst case: consider forecasting nominal
wages assuming a fixed future trajectory for prices.

[f] Parameters which are assumed constant but alter
Parameters are almost automatically assumed constant in forecasting but may alter. Two possibil-
ities are that agents alter the way they form expectations (the Lucas critique discussed in section
13, and noted above); and that a regime shift occurs out of sample. Examples of how financial
innovation in the U.K. and the U.S.A. can be handled to allow reasonable parameter constancy are
provided in Hendry and Ericsson (1991) (also see Baba et al., 1992).

[g] Incorrectly measured initial values
The initial values for the forecast are usually incorrectly measured and this is undoubtedly an
important source of error in short-term forecasts.4 Several possibilities suggest themselves for
improving current practice. First, the econometric model itself could be used to predict the initial
conditions for the current forecast, given the better established initial values from a few years
earlier. Adjustments can be made where discrepancies arise suggestive of incorrect initial values.
Second, ‘intercept corrections’ to reflect extraneous information can be used. This is about the only
justifiable use of such ad hoc factors. As shown in Chong and Hendry (1986) the impact of larger
measurement errors at the end of the sample can be derived analytically, and entail appropriate
corrections. Thirdly, survey information can help confirm or amend other measurements on the
state of the economy.

[h] Incorrect specification of the model for the economic mechanism
When, as always, the econometric model is not a correct specification of the economic mechanism,
a variety of mistakes can ensue. Much effort in technical econometric theory is devoted to this
issue. Conversely, to obtain useful forecasts, it is not necessary for the model to be a facsimile of
the economy, merely to model it up to an innovation error on the available information. Section
16 considers some of the specification issues; Hendry (1995) provides an extensive treatment.

9 Systems for non-stationary data

We first need a notation for writing down large systems. Let xt be an N × 1 vector of time-series
variables such that xt = (x1t, x2t, ..., xNt)

′. For exposition, the data generation process (DGP) is
the dynamic linear system:

A(L)xt = ΨDt + νt where νt ∼ INn [0,Σ] , (17)

for t = 1, . . . , T where Dt is N × k and contains k deterministic components (constant, trend,
any shift indicators and centered seasonal dummy variables), and νt is an independent normal
error with expectation E[νt] = 0 and variance matrix V[νt] = Σ. In (17):

A(L) =

p∑
j=0

AjL
j = IN +A∗(L) (18)

4Depending on the variable, as some could be accurately measured, such as domestic interest rates.
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which is a pth order matrix polynomial in the lag operator L with A0 = IN . Also, Σ is an
unrestricted N × N covariance matrix. The initial values (x1−p,x2−p, ...,x0) are fixed, and p
is finite, so that moving average components are excluded. These assumptions, together with
those about independence, normality and homoscedasticity, are made to simplify the analysis,
and none of them is a fundamental restriction. Their relaxation would complicate the algebra
without yielding valuable additional insights. However, the assumption that {A1, ...,Ap, ψ,Σ}
are constant is fundamental. Equation (17) can be reparametrized as:

∆xt =

p∑
i=1

Πi∆xt−i +Πxt−p +ΨDt + νt (19)

where Πi = −(IN +
∑i

j=1Aj) and Π = −(IN +
∑p

j=1Aj) = −A(1) and so Π is the matrix of
long-run responses: see e.g. Johansen and Juselius (1990). Although νt ∼ INn [0,Σ], and hence is
stationary, the N variables in xt need not all be stationary. For example, if p = 1 and Π = 0, then
(19) consists of N random walks, possibly with drifts and quadratic trends. Ignoring deterministic
non-stationarities, the rank of Π determines how many levels variables are stationary, and how
many are integrated of higher order. If the long-run matrix Π is full rank then xt is stationary.

It is assumed throughout that none of the roots of det(A(L)) = 0 are inside the unit circle,
so that explosive variables are excluded. Letting r denote the rank of Π, there are three cases:
(i) r = N so that all N variables in xt are I(0) and hence stationary if there are no deterministic
regime shifts or trends in Dt; (ii) r = 0 so that all N variables in xt are I(1), and ∆xt is stationary
(apart from the possibility of a deterministic trend); and (iii) 0 < r < N in which case there
are (N − r) linear combinations of xt which act as common stochastic trends, and r cointegrated
linear combinations of xt that lead to error-correction mechanisms (ECMs): see e.g., Hylleberg
and Mizon (1989).5

It is crucial that the nature of the deterministic variables in Dt be established if valid inferences
are to be drawn, particularly when xt is I(1). The systems-based Maximum Likelihood Estimator
(MLE) of Johansen (1988) determines the number of cointegrating vectors. His approach allows
tests of linear restrictions on cointegrating vectors so that alternative theories of long-run outcomes
can be tested directly without conditioning too strongly on any particular model of short-run dy-
namics. Cointegration occurs if linear combinations of the xt are I(0), denoted by β′xt ∼ I(0):
see Granger (1986) and Engle and Granger (1987). The number of cointegrating vectors equals
the rank of β, denoted r, but r will almost always be unknown and first has to be determined
from the data. If r is underestimated, then empirically relevant ECMs will be omitted, possibly
misleading policy decisions. Conversely, if r is overestimated, the distributions of statistics will
be non-standard, so incorrect inferences will result from using conventional critical values in tests,
and forecasts may be badly behaved. The test for r cointegrating vectors in Johansen (1988) is
equivalent to testing whether Π = αβ′, where α and β are N × r, and hence are tests of Π for
reduced rank. If Π were unrestricted, a conventional regression estimator would result.

Once the degree of cointegration has been established, the estimated cointegrating combina-
tions are denoted by β̂′xt, and these linear combinations of the data are the estimated ECMs.
Moreover, α reveals the importance of each cointegrating combination in each equation, and is
related to the speed of adjustment after a disequilibrium. If a given ECM enters more than one
equation, the parameters are inherently cross-linked between such equations, and hence their de-
pendent variables cannot be weakly exogenous in the related equations (see Engle et al., 1983).
This entails that joint estimation is needed for fully efficient estimation. It must be stressed that
cointegrating vectors are the only invariants of linear systems under linear transformations, and
that they are preserved in all linear representations of the system.

5ECM was the name given by Davidson et al. (1978) and also used by Engle and Granger (1987), but as discussed
in the Epilogue, in reality, ECMs do not error correct across regime shifts, but correct back to the previous equilibrium,
which can be inimical to forecasting, but was not understood at the time of the report.
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To analyze forecasting, we re-express the system in I(0) space in stacked form with a single
lag:

st = Υst−1 +Ψ∗D∗
t + ϵt where st =


∆xt

...
∆xt−p+2

β′xt−p+1

 , D∗
t =


Dt

0
...
0

 and ϵt =


νt
0
...
0


(20)

and:

Υ =


Π1 Π2 · · · Πp−1 α
IN 0 · · · 0 0
· · · · · · · · · · · · · · ·
0 0 · · · β′ IN

 , and Ψ∗ =


Ψ 0 · · · 0 0
0 0 · · · 0 0
· · · · · · · · · · · · · · ·
0 0 · · · 0 0

 (21)

In (20), ϵt ∼ IN[0,Ω] where Ω is non-negative definite, but possibly singular and st is I(0). The
system can be reformulated by partitioning xt into (x′

a,t,x
′
b,t)

′ where ∆xa,t and β′xt are I(0),
the former corresponding to the equations with unit roots. Letting wt = (∆x′

a,t, β
′x′

t)
′ then the

long-run solution for the system can be defined in terms of E[wt]: this is a major contrast with
E[xt], which is not constant. In what follows, we ignore deterministic terms Ψ∗D∗

t to simplify the
algebra.

Equation (20) defines both conditional and unconditional means and variances of all the I(0)
variables:

E[st|st−1] = Υst−1 and V[st|st−1] = Ω (22)

and:
E[st] = 0 and V[st] = M = ΥMΥ′ +Ω (23)

In I(0) space, the VAR can be interpreted as a model of conditional means and variances.
Given that background, simultaneous equations models (SEMs) have the form:

Φst = ut (24)

where Φ is a m × N∗ matrix of structural parameters with N∗ = N(p − 1) + r and m < N ,
subject to normalization and sufficient a priori identifying restrictions. Equations (20) and (24)
imply that:

Φst = ΦΥst−1 +Φϵt = ut (25)

The errors ut are usually assumed by investigators to be serially uncorrelated, but this will only
be the case if ΦΥ = 0, so that ut = Φϵt. If ΦΥ = 0, then (24) is dynamically well specified,
but such a condition cannot be known to hold a priori and so has to be tested relative to (20).
When ΦΥ ̸= 0, (24) is dynamically mis-specified in that ut will be serially correlated, and hence
potentially all other inferences about the elements of Φ are invalid.

10 Exogeneity

For an open system to be well defined in terms of I(0) modelled variables, all of the initial non-
stationarity must be inherited from the non-modelled variables. If the locations of the unit roots
and cointegrating vectors are known, the system as a whole can be mapped into I(0) space where
conventional asymptotics apply. Modify the transformed partition of xt into wt as (yt : zt), where
the zt are to be treated as weakly exogenous for the parameters of interest, denoted µ, deemed to
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include α and β (see Engle et al., 1983). Factorize the joint sequential density of wt accordingly
as:

Dwt(wt|st−1, θ) = Dyt|zt(yt|zt, st−1, θ1)Dzt(zt|st−1, θ2) (26)

noting that information on the cointegrating vectors is retained by st−1. Then, zt is weakly ex-
ogenous for µ if µ depends on θ1 alone, and θ1 and θ2 are variation free. Such a requirement is
violated if both θ1 and θ2 depend on the same βi, which is testable from the procedure in Johansen
(1988) and Johansen and Juselius (1990), whereas linking short-run parameters with βi need not
matter for some inferences, although it may do for forecasting.

11 Structural econometric models

From (26), yt is the vector of m endogenous variables to be explained by the open system, and
zt is the vector of N −m non-modelled variables, both of which could enter the model with lags
of up to p periods. We only consider linear stochastic models in this section, and write the model
(24) in extensive form as:

B0yt +B1yt−1 + · · ·+Bpyt−p =

p∑
i=0

Cizt−i + ξt (27)

so that B0 is them×mmatrix of coefficients of all the endogenous variables, B1 is the coefficient
matrix of the 1-lagged endogenous variables ..., C0 is the (N − m) × (N − m) matrix of the
current dated non-modelled variables, etc. Providing the model is a congruent representation
of the system, ξt has a well-defined error distribution, taken here to be an independent normal
distribution with mean zero and covariance matrix Σξ.

The structural form (27) often claims to model the decision equations of the relevant agents.
The reduced, or solved, form finds yt as a function of the givens, i.e., the parameters, non-modelled
variables and lagged variables, and corresponds to the top block of the VAR in (17), in I(0) space:

yt = f (yt−1, . . . ,yt−p, zt, . . . , zt−p, ξt) (28)

If the system is linear, a necessary condition to be able to solve it for the outcomes is that B0 is
non-singular, in which case, a solution is given by:

yt = (B0)
−1

p∑
i=0

Cizt−i − (B0)
−1B1yt−1 − · · · − (B0)

−1Bpyt−p + (B0)
−1 ξt

= Γ0zt + Γ1zt−1 + · · ·+ Γpzt−p +G1yt−1 + · · ·+Gpyt−p + ηt (29)

Thus, given the data up to and including time t−1 on (y, z), together with z and all the parameters(
Γ0,Γ1, . . . ,Γp,G1, . . . ,Gp

)
, the next value of yt is generated by equation (29).

We have shown in (20) that one lag is fully general and is the only case we need to consider.
Hereafter we write the system as:

B0yt +B1yt−1 = C0zt +C1zt−1 + ξt (30)

with reduced form:
yt = Γ0zt + Γ1zt−1 +G1yt−1 + ηt (31)

The model also holds one period earlier, so that from (31) and its value at time t− 1:

yt = Γ0zt + Γ1zt−1 +G1 (Γ0zt−1 + Γ1zt−2 +G1yt−2 + ηt−1) + ηt

= Γ0zt + (Γ1 +G1Γ0) zt−1 +G1Γ1zt−2 +G2
1yt−2 + ηt +G1ηt−1 (32)
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If the autoregressive component of the model is dynamically stable, Gh
1 → 0 as h→ ∞ so that:

yt = Γ0zt + (Γ1 +G1Γ0) zt−1 +G1 (Γ1 +G1Γ0) zt−2 + · · ·+ ηt +G1ηt−1 + · · ·

→ Γ0zt +

∞∑
i=0

Gi
1 (Γ1 +G1Γ0) zt−i−1 +

∞∑
i=0

Gi
1ηt−i (33)

Thus, due to the dynamics, yt is the cumulation of all past zt−h with declining weights (since
Gh

1 → 0). The shocks cumulate as well, again with declining weights if the system is stable.
Define the static equilibrium (unconditional expectation) for E[zt] = z∗ ∀t. Then:

E[yt] = y∗ = Γ0z
∗ +

∞∑
i=0

Gi
1 (Γ1 +G1Γ0) z

∗ = Ξz∗, (34)

From (31), an alternative expression for Ξ is:

y∗ = (I−G1)
−1 (Γ0 + Γ1) z

∗ = Ξz∗ (35)

so that the long-run multiplier is:
∂y∗

∂z∗

′
= Ξ (36)

This shows the total effect of a change in z on y.
If ηt is not autonomous to the economic system, but is treated as exogenous, incorrect results

will be obtained. An example of this mistake is the treatment of incomes policies as exogenous
shocks when in fact they are an endogenous response to developments in the economy. More
subtle examples occur in the analyses of closed systems with no z variables so that (31) becomes
a VAR, which seeks to attribute the effects of shocks to different endogenous variables.

12 Model cointegration

In practice, since investigators do not know which transformations of the original data are I(0),
initial (and sometimes final) formulations of econometric models have neither yt nor zt stationary,
but evolving. Since economic growth is attributed to such factors as technical progress, knowledge
accumulation, population growth etc., closed macroeconomic systems are rare. Thus, Gh

1 → 0 in
(33) is reasonable if growth is explained by zt. However, that requires both that E[∆zt] = g is
also reasonable and that sufficient elements of C0 and C1 are non-zero. Thus, the non-modelled
variables alone have the unit roots.

Unit roots can affect the consistency of (30) in that combinations of orders of integration for
yt and zt need not be mutually consistent with the assertion that ηt is I(0). For example, if yt is
I(1) (say), the unit roots must cancel between B0yt and (B1yt−1 +C0zt +C1zt−1). One way of
doing so is if B1 = B0 and C1 = −C0 , so that (30) really holds in differences:

B0∆yt = C0∆zt + ξt (37)

Now all terms are I(0) if the original data are I(1), and no issue of balance arises. However,
with no lags, no forecasting power remains either unless ∆zt is forecastable. Moreover, (37) has
a more serious drawback: the growth rates of economic variables are made independent of their
historical levels and of any past disequilibria, which seems counter factual. Falsely assuming that
(37) is true can adversely affect policy by neglecting the feedbacks of past disequilibria on to
present outcomes: for example, in the housing market, the history of mortgage rationing led to a
large backlog to be cleared.
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When yt and zt are I(1) and cointegrated, the static solution derived above characterizes the
cointegrating equations so that (yt −Ξzt) is I(0). Thus, the model has the form:

B0∆yt = C0∆zt +D0 (yt−1 −Ξzt−1) + ξt (38)

where every term is I(0) even though the levels are I(1). Past disequilibria influence present growth,
and if D0 has the requisite properties (i.e., induces a stable G1), the system is continually being
driven towards the dynamic temporary equilibrium yt = Ξzt. Terms of the form (yt−1 −Ξzt−1)
are the ECMs at the system level. The Oxford Economic Forecasting (OEF) model has this form,
and can be solved statically for the cointegrating equations as yt = Ξzt, or dynamically for growth
paths.

13 Regime shifts

To clarify notation, let θt be the parameters of the joint density at t, λt = g(θt) ∀t, and consider
the density formulation over the sample where Yt−1 = (yt−1,yt−2, . . .) and similarly for Zt−1:

T∏
t=1

Dyt|zt (yt|zt,Yt−1,Zt−1, λ1,t)
T∏
t=1

Dzt (zt|Yt−1,Zt−1, λ2,t) (39)

where λ′t = (λ′1,t, λ
′
2,t) The first term is the conditional model of yt and the second the marginal

model for zt. If agents form expectations about zt when planning yt, then λ1,t will depend on
λ2,t and so alter when λ2,t changes. If zt is not observable by the agent at the time the plan is
formulated, then the first density must be marginalized with respect to zt, or zt must be modelled.
Both conditional and expectational models can be derived from the joint density of (yt, zt).

Reconsider (39) but factorized in the alternative direction as:

T∏
t=1

Dzt|yt (zt|yt,Yt−1,Zt−1, γ1,t)
T∏
t=1

Dyt (yt|Yt−1,Zt−1, γ2,t) (40)

where γ′t = (γ′1,t, γ
′
2,t). Because both γ1,t and γ2,t depend on all elements of λt, neither model

in (40) can have constant parameters; nor can both marginal models. Tests of this dependence are
discussed in Engle and Hendry (1993) and Favero and Hendry (1992). In practice, there is almost
no evidence for such dependencies being due to ignoring expectations processes. Moreover, the
power of tests for the Lucas critique may be low, suggesting that it lacks force. Conversely, there is
plenty of evidence of model failure due to mis-specification, so resources may be better allocated
to improving equation forms than to re-interpreting equations as expectational.

14 Encompassing

Consider two rival SEMs of the form:

Ha : Φast = ua,t and Hb : Φbst = ub,t (41)

which are overidentified relative to the congruent statistical system (24) where Φa and Φb are
ma × N∗ and mb × N∗ respectively. The SEMs are assumed to be complete (i.e. ma and mb

equal m) and are I(0). This ensures that the correct critical values of tests are used in practice (e.g.
not conventional ones if the VAR is I(1) and the SEM is I(0)); we assume a mapping to I(0) prior
to testing encompassing hypotheses. Subtle issues arise when the SEMs are incomplete as they
must be explaining the same set of variables (see Hendry and Richard, 1989). Here, we restrict
attention to complete systems.
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The error covariance matrices of each specification in (41) are given by Σaa = ΦaMΦ′
a and

Σbb = ΦbMΦ′
b respectively, so that Ha dominates Hb in generalized variance (or likelihood) if

det(Σaa) ≤ det(Σbb). Although generalized variance dominance provides a natural criterion for
model comparison, it is only a necessary condition for Ha to encompass Hb (denoted HaEHb).
When the DGP for xt is not known, the congruent statistical system, in this case the VAR (17),
rewritten as in (20), provides a common probability space within which the rival models can be
compared.

Let γb denote the vector of parameters in Φb which characterizes Hb, noting that the value of
γb is implied by (20), and hence is a function of Υ and Ω. Let γp denote what Ha predicts γb to
be when Ha is assumed to be the DGP. Then:

Ha encompasses Hb (HaEHb) if and only if (γb − γp) = 0 (42)

Both Ha and Hb are nested within the VAR (20)—ignoring deterministic terms as being in common—
which we denote by Hi ⊂VAR. It is clear that the VAR automatically encompasses Hi by virtue of
each Hi being a reduction of the VAR. The issue here is whether either of Ha or Hb encompasses
the VAR. If so, since a simple model is accounting for the results of a more general model within
which it is nested, we call this parsimonious encompassing of the VAR, denoted HaEpVAR, or
HbEpVAR. For further details on encompassing, see Mizon (1984), Mizon and Richard (1986),
and Hendry and Richard (1989).

The main difficulty in establishing encompassing theorems about SEMs is that their exogeneity
assumptions may differ, so that the models are not in a common probability space. This problem
does not arise with closed systems if either Ha or Hb asserts that Ei[ui,ts

′
t−1] = 0 for i = a, b

where Ei denotes expectations with respect to model i. Consider the case when i = a. Since
Ea[ua,ts

′
t−1] = 0 implies that the derived error ua,t is an innovation against the past of the process,

from (20):
E[Φasts

′
t−1] = ΦaΥE[st−1s

′
t−1] (43)

which must be zero ∀t, and hence:
ΦaΥ = 0 (44)

This is precisely the earlier condition for the absence of dynamic mis-specification. If (44) holds,
then Ha is a valid reduction of the VAR and hence Ha parsimoniously encompasses the VAR.
Conversely, if (44) does not hold, Ha cannot encompass the VAR since Ha can be rejected against
the VAR in that elements of st−1 must be relevant to Ha in addition to the variables included
through its definition in (20). If neither modeller accepts the validity of the instruments used by the
other or there are insufficient instruments to identify the joint or nesting hypothesis, considerable
problems can ensue and cross-model encompassing may not be testable. Thus, conditional on the
proprietor of Ha accepting lagged variables as legitimate potential explanatory variables:

Theorem 1: HaEVAR if and only if ΦaΥ = 0.

A consequence of Theorem 1, is:

Theorem 2: If HaEpVAR and Hi ⊂VAR then HaEHi.

Thus, the VAR is a catalyst for allowing encompassing comparisons between SEMs. The converse
of Theorem 2 is false in that HaEHi could hold without HaEpVAR (e.g., because Hi ⊂ Ha), but by
requiring congruence, Ha would be rejected against the VAR in our framework.

In practice, for models the size of that used in H.M. Treasury, system parameter, or even
variance, encompassing is hard to implement. Thus, the alternative of forecast encompassing (see
Lu and Mizon, 1991) is useful, namely can Ha explain the forecast errors of Hb? This is discussed
in section 6.
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15 System forecasting

Consider the slightly simplified reduced form system from (31) defined by:

yt = Γ0zt +G1yt−1 + ηt (45)

where w′
t = (z′t : y

′
t−1) rather than as in §10 for the conditional distribution in (26). The zt are the

non-modelled and policy variables (including their lags), where yt and zt are I(1) but cointegrated.
One-step forecasts from (45) at time T are given by:

ŷT+1 = Γ̂0zT+1 + Ĝ1yT (46)

with forecast errors ex post when zT+1 is known (as in a policy context):

yT+1 − ŷT+1 =
(
Γ0 − Γ̂0

)
zT+1 +

(
G1 − Ĝ1

)
yT + ηT+1

=
(
G− Ĝ

)
wT+1 + ηT+1 = η̂T+1 (47)

For testing for predictive failure, 1-step forecast errors are calculated as:

η̂T+1 =
(
I⊗w′

T+1

) (
G− Ĝ

)v
+ ηT+1 (48)

where (·)v denotes vectoring. Then to a first approximation when Ĝ is unbiased for G (see e.g.,
Hendry and Trivedi, 1972):

E [η̂T+1] = 0 and V [η̂T+1] = Ω+
(
I⊗w′

T+1

)
V
[
Ĝ
]
(I⊗wT+1) = Θ1 (49)

so that (see Calzolari, 1981, and Chong and Hendry, 1986):

η̂T+1 ≈ IN [0,Θ1] (50)

where Θ1 reflects both parameter and innovation uncertainty.
In an operational context, ex ante statements about an economy require knowledge of all of

the conditioning variables when the forecast horizon H exceeds unity. This necessitates a closed
system, or ‘off-line’ forecasts of zT+1. From (20):

st = Υst−1 + ϵt (51)

where ϵt ∼ IN[0,Ω] which is an innovation against st−1. Then (51) is a stacked version of
the system in I(0) space so Υ depends on all the parameters of that system, which we denote
by the vector of parameters δ to distinguish from the structural parameters. Since MLEs are
equivariant to functional transformations, the MLE of Υ is given by Υ̂ = Υ(δ̂) from which V[Υ̂]
can be derived.6 The optimal predictor of a mean-zero martingale difference sequence is zero, so
E[ϵT+i] = 0. Consequently, once sT is known, the best predictor of sT+i for i > 0 is:

ŝT+i = Υ̂isT (52)

with forecast errors ϵ̂T+i = sT+i − ŝT+i The derivation of the variance matrix Vi = V[ϵ̂T+i]
is complicated so is not presented here. The model must continue to characterize the economy
as well in the forecast period as it did over the estimation sample if the prediction errors are to
be from the same distribution as that assumed, namely IN[0,Ω], ignoring the sampling variation
due to estimating Υ. This is a strong requirement, and is unlikely to be met unless Υ is constant
within sample: the further condition that Υ is invariant to any regime changes out-of-sample is
required. Even if Υ is both constant and invariant, Vi increases with i, and the forecast errors will
be heteroscedastic and serially correlated, so care is required in interpreting forecast errors.

6Ψ∗ in (20) also needs estimated in practice jointly with Υ.

23



16 Conditional dynamic forecasts

To see where all sources of uncertainty enter, we explicitly express the model in a conditional
form. When yt is generated dynamically, multi-period forecasts (denoted by˜ ) must mimic the
dynamics by successively calculating yt+i, feeding back previously generated yt+i−j as in (ignor-
ing parameter estimation uncertainty to focus on the dynamics):

ỹT+i = Γ0zT+i +G1ỹT+i−1 (53)

Subtracting (53) from the conditional reduced form (45) yields:

yT+i − ỹT+i = G1 (yT+i−1 − ỹT+i−1) + ηT+i (54)

Thus, even for known zT+i, ỹT+i can differ from yT+i sometimes drastically. From (54), the
stochastic simulation error η̃T+i = yT+i − ỹT+i follows the same autoregressive process as the
model. Thus, iterating:

η̃T+i =

i−1∑
j=0

Gj
1ηT+i−j (55)

so the multi-step forecast error process η̃T+i is autocorrelated and heteroscedastic.
In any operational environment of dynamic forecasting, parameters must be estimated; the

future values of the zT+i will be unknown and must be forecast as well (e.g., world trade, oil
prices); and initial conditions will be incorrect. We denote parameter estimates by ̂ , off-line
forecasts by − , and endogenous variables forecasts by ˜ . Thus, for j = 1, . . . ,H , dynamic
forecasts must iteratively solve:

ỹT+j = Γ̂0zT+j + Ĝ1ỹT+j−1 (56)

commencing from the initial conditions ỹT and zT+1, which may differ from the true values yT

and zT+1

For forecasting more than one period ahead outside of the historical sample, the errors on (56)
behave like those in (55). If Ĝ1 has a root of unity, the forecast errors will cumulate and will
have a trending variance as in section 7. In I(0) space, however, the forecast error variance will be
bounded. Since model forecasts are statistics, subject to sampling fluctuations, they have standard
errors. In the simplest case when parameter values, initial conditions and future zT+i are known
and correct, the forecast errors cumulate as in (55). Since forecasts from a correctly specified
linear model are essentially unbiased, the forecast error variance from (55) is given by:

E
[
η̃T+j η̃

′
T+j

]
= E

[
j−1∑
i=0

j−1∑
k=0

Gi
1ηT+j−iη

′
T+j−k(G

k
1)

′

]
(57)

As before, forecast standard errors increase with the horizon ahead. If all the latent roots of G1

lie inside the unit circle, the expression in (57) will converge to the unconditional variance of yt,
given current and past zt. Otherwise, it will diverge.

It is not always wise to focus on high frequency forecasts even if the forecast period is frequent.
For example, when a period t denotes a quarter, an annual average forecast may be more useful
in many circumstances. Denote these annual average forecasts by ̂ . For the simplest case of
complete knowledge, except for the innovation error, where J denotes the 4th quarter of year T ,
so J = T/4, let:

η̂T,J =
1

4

3∑
i=0

η̃J−i (58)
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Thus, the variance of the annual mean forecast error will be one sixteenth of the sum of the
variances plus the covariances, which will usually lie between one half and one quarter of the final
period variance.

When the future zT+i have to be forecast, initial conditions are uncertain and parameters are
estimated, more complicated results are obtained:

yT+j − ỹT+j = Γ0zT+j − Γ̂0zT+j +G1yT+j−1 − Ĝ1ỹT+j−1 + ηT+j

=
(
Γ0 − Γ̂0

)
zT+j + Γ̂0 (zT+j − zT+j) +

(
G1 − Ĝ1

)
yT+j−1

+ Ĝ1 (yT+j−1 − ỹT+j−1) + ηT+j (59)

There are four obvious sources of error in (59), and four non-obvious ones, namely:
a] Parameter uncertainty, in the form of

(
Γ0 − Γ̂0

)
and

(
G1 − Ĝ1

)
;

b] Non-modelled variable uncertainty, in the form (zT+j − zT+j);
c] Cumulative mistakes in forecasting endogenous variables, from (yT+j−1 − ỹT+j−1);
d] The innovation error, ηT+j ;
e] Treating the zT+j as given, when in fact yT+j−1 affects zT+j ;
f] Assuming (Γ0,G1) to be constant, when they alter;
g] Incorrectly measuring the initial values, so ỹT ̸= yT and zT+1 ̸= zT+1;
h] The model is not a correct specification of the economic mechanism so the ηT+j are not inde-
pendent homoscedastic Normal.
These eight sources of forecast error are discussed in section 8.

17 Non-linearity

Many of the features established above for linear models carry over to non-linear systems, although
some do not. In particular, deterministic solutions do not coincide with the average of stochastic
replications, and explicit model solutions are often not feasible for a non-linear system, so that
system congruence is harder to check and systems have to be solved numerically. We can write
the general case as:

f (yt,yt−1, zt, zt−1; ηt|θ) = 0 (60)

where θ denotes the vector of parameters. There are many algorithms for solving models, but
Gauss–Seidel is the most common. To calculate a multiplier analog, care is needed since the
numerical sizes of multipliers depend on the state of the system. Let one z, say zj,t, change by an
amount δj,t. Then, for an impact multiplier, using a first-order Taylor approximation:

∂yt

∂zj,t
=

f (yt|yt−1, zt + δj,tι, zt−1; θ)− f (·)
δj,t

(61)

where ι is a zero vector except for unity in the jth position. Thus, the procedure is: solve for
yt, change or perturb zt, solve again for the changed yt, and use ∆yi,t/δj,t as the multiplier. In
practice, large models seem close to log-linearity locally other than having equations in logs but
linear identities, so this method works reasonably well. Figure 7 illustrates by a graph for a linear
system, where the sequence of multipliers can be calculated from the differences between the two
trajectories, divided by the perturbation.

Since deterministic forecasts are obtained by solving the model out of sample, unbiased fore-
casts and forecast standard errors can be found by randomly drawing perturbations in the solution
process and averaging across the results for the mean forecast. The empirical variance around that
mean then estimates the forecast uncertainty, determined by whatever factors are perturbed. Al-
though this process is computationally intensive, forecast standard errors are so useful that effort
should be devoted to obtaining and reporting them.

25



18 The artificial data model

Denote the three variables corresponding to “consumption”, “income” and “saving” by C, Y and
S respectively. Then the system used to generate the data was:

∆Ct = 0.05 + 0.5∆Yt + 0.2St−1 + ϵ1,t (62)

∆Yt = 0.05 + 0.5∆Yt−1 + ϵ2,t (63)

St = Yt − Ct (64)

where ϵi,t ∼ IN[0, σii] with E[ϵ1,tϵ2,s] = 0 ∀t, s, and σ11 = 0.02 and σ22 = 0.05. Solving (62)
and (63) for the reduced form consumption equation yields:

∆Ct = 0.075 + 0.25∆Yt−1 + 0.2St−1 + ϵ1,t + 0.5ϵ2,t (65)

so that the savings equation is:

St = −0.025 + 0.25∆Yt−1 + 0.8St−1 − ϵ1,t + 0.5ϵ2,t (66)

Thus, equations (63) and (66) define the 2-equation model in I(0) space.
In terms of the Υ matrix, where st = (∆Yt, St):

st =

(
0.050
−0.025

)
+

(
0.50 0.0
0.25 0.8

)
st−1 +

(
ϵ2,t

−ϵ1,t + 0.5ϵ2,t

)
(67)

This representation retains the correct number of differenced variables and cointegrating combi-
nations. If fewer of the latter were kept, policy would suffer since important long-run connections
would be ignored; if more of the latter were kept, they must be spurious and actually be I(1)
functions, which would, therefore, have a detrimental effect on forecasting.

If the model is reduced to using only growth rates, to ensure that only I(0) variables are in-
cluded, as essentially occurs with VAR models in the U.S.A. (see e.g., Sims, 1980), the two equa-
tions become:

∆Ct = α1,0 + α1,1∆Yt−1 + ξ1,t (68)

∆Yt = α2,0 + α2,1∆Yt−1 + ξ2,t (69)

where ξ1,t contains St−1. Further lags may be needed to remove the resulting residual autocor-
relation. This representation ensures bounded forecast error variances, but at the cost of forecast
efficiency, and possibly poor policy advice, since past disequilibria are often important in deter-
mining future behaviour.

If the model is left in levels, it can be written as:

Ct = 0.075 + 0.45Yt−1 − 0.25Yt−2 + 0.8Ct−1 + ϵ1,t + 0.5ϵ2,t (70)

Yt = 0.05 + 1.5Yt−1 − 0.5Yt−2 + ϵ2,t (71)

All of the variables in (70) and (71) are I(1) and have trending means and variances, so inference
is suspect unless appropriate critical values are used for tests: these values differ according to
whether the test happens to involve I(0) or I(1) combinations. Many statistics have non-standard
distributions with much larger critical values than conventional ones. The forecast variances of
the levels trend as the horizon increases: see figure 6. Concerning the predictability of economic
models, the various powers of Υ are as follows:

Υ2 =

(
0.25 0.00
0.325 0.64

)
and Υ3 =

(
0.125 0.00
0.385 0.51

)
(72)
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with:

Υ4 =

(
0.063 0.00
0.339 0.41

)
and Υ5 =

(
0.031 0.00
0.287 0.33

)
(73)

All ability to predict ∆Yt has vanished by 5 period with the coefficient being just 0.031, and little
remains for St This matches the illustration presented in the text, and for stationary combinations
of series, seems a realistic implication.

19 Conclusions and recommendations

Of the available forecasting methods surveyed in section 2, macro-econometric systems offer the
only sustainable and progressive alternative. They are resource intensive and as yet far from per-
fect, but they consolidate empirical knowledge and allow a rational basis for forecast judgements
to be made. An important key to avoiding the most egregious forecast errors from econometric
systems is to express them in terms of stationary variables. This is not simply a matter of predicting
changes rather than levels, but of having all variables in differences or cointegrated linear combi-
nations. Otherwise, serious forecast errors can arise due to retaining non-stationary functions in
the forecasts.

Conditional forecasts form an essential component of economic policy decisions by govern-
mental agencies. Unconditional forecasts will rarely be useful per se, but may provide a check on
other forecasting procedures. Long-horizon forecasts from macro-econometric systems expressed
in an appropriate stationary form converge on the unconditional forecasts. Improvements in data
accuracy would obviously help greatly, but are not a panacea since many other areas also need
improvement.

Pooling of forecasts offers little direct hope for increased forecast accuracy, and indeed the
need to pool is direct evidence of non-encompassing of the models involved. However, forecast
pooling may have a useful role in improving the accuracy of initial conditions and the forecasts
of non-modelled variables, especially when the second source is an unconditional or survey based
forecast. Tests between time-series models and econometric systems are useful in appraising the
validity of the latter. Selecting models with minimum mean square forecast errors is an inadequate
strategy, since the model need not encompass the forecasts of competing models, nor have constant
parameters.

Countering the Lucas critique, with its associated emphasis on modelling expectations as an
input to the models’ equations, seems to offer little scope for forecast accuracy improvements.
Tests for its presence or absence should be conducted first.

Forecasting at a high frequency, close to that of decision taking by economic agents, and
reporting longer period averages should reduce forecast uncertainty.

Forecast confidence assessments should accompany forecasts.

Epilogue

I was surprised at how much was understood in 1991, as well as seeing some key misunder-
standings. A theory of forecasting applicable to a wide sense non-stationary world, namely with
stochastic trends and location shifts, when the forecasting model differs from the data generation
process is present in an embryonic and unformalised way, as is the start of taxonomies of sources
of forecast error, both later leading to many developments, summarized in Clements and Hendry
(1999). Indeed, taxonomies played a crucial role in ascertaining what aspects of forecasting de-
vices led to systematic errors (e.g., location shifts and incorrect forecast-origin data), and what
played secondary roles (e.g., changes in the parameters of zero-mean variables).
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Thus, deterministic terms transpired to be more crucial in explaining systematic forecast fail-
ure than reflected in the report, as was the fact that other parameter changes were less crucial,
despite the findings to that effect in Favero and Hendry (1992) (first presented as the A.W. Phillips
Lecture at the 1989 Australasian Meeting of the Econometric Society, so known at the time). That
lack of connecting ideas also influenced my major failure to distinguish ‘error-correction mech-
anisms’ (ECMs above), as named by Davidson et al. (1978) (DHSY) and continued by Engle
and Granger (1987), from ‘equilibrium-correction mechanisms’ (EqCMs)—although Clive con-
templated using the latter for cointegrating vectors. The key problem is that while ECMs ‘error
correct’ within regimes, in that they act to eliminate departures from the equilibrium mean, they
do not do so across regime shifts, but instead correct back to the previous equilibrium. That prop-
erty can be highly inimical to forecasting: not only does systematic failure result, but the forecasts
move in the opposite direction to the shift to re-establish the in-built equilibrium mean.

Figure 11 clarifies this effect, which was actually occurring to the Treasury forecasts at the
time, fooling the then Chancellor of the Exchequer, Norman Lamont, into seeing ‘green shoots
of Spring’ in the economy that were in fact non-existent. The forecasts are from the ‘saving’
model matching the in-sample artificial data generation process, and are for 1-step ahead after an
increase in equilibrium ‘saving’, taking the value of the change in ‘income’ as known to highlight
the impact of the location shift. The arrows show that each successive forecast after the first is
below the previous outcome, hence showing a sequence of forecasts of falls when ‘saving’ has
risen above the previous equilibrium mean.

1-step forecasts with 95% bands 
‘saving’ after a mean shift 

1988 1989 1990 1991 1992 1993

0.0

0.2
1-step forecasts with 95% bands 
‘saving’ after a mean shift 

Figure 11: Eight 1-step ahead forecasts of ‘saving’ with 95% interval forecasts over 1991(1)–
1993(1) after a mean shift.

A phone conversation from the Treasury some time after the report telling me that the con-
sumers’ expenditure equation based on DHSY had gone off track made me wonder if the major
financial innovations of the 1980s, which I had been modelling in terms of shifts in money-demand
equations (see e.g., Hendry, 1985), might also have led to a shift in the equilibrium ratio of expen-
diture to income. A small amount of algebra then revealed the key distinction between ECMs and
EqCMs.

Thus, under-emphasising the roles of location shifts, or distributional shifts more generally
although mean shifts are particularly problematic, is the most marked lack, and analyzing then
resolving their impacts on modelling and forecasting became a major focus, including modelling
shifts themselves as in Hendry (1999) leading to the formalization of the vast class of indicator
saturation methods (e.g., Hendry et al., 2008, Johansen and Nielsen, 2009, Ericsson, 2012, Castle
et al., 2015, and Pretis et al., 2016).

With colleagues I explored a variety of possible ‘solutions’ to forecasting after a location
shift, including intercept corrections in Hendry and Clements (1994) and Clements and Hendry
(1996). The comments in section 8g about intercept corrections being ad hoc (other than when
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adjusting poorly measured initial values) needed substantial alteration as one type, namely that
based on adding back the previous forecast error, transpired to offset systematic failure after a
location shift. This is visible in Figure 11 from the second forecast onwards, as the magnitude
of under-forecasting is relatively constant. The recent developments in Castle et al. (2025) show
what a huge opportunity to improve forecasting after breaks was missed by not studying intercept
corrections more carefully.

We also considered recursive updating, which also helped, but did so by eliminating the EqCM
term and converging on an equation in differences. Indeed, such a strategy was noted above, but
lost a variable that was potentially valuable for policy, namely the long-run equilibrium feedback.
However, we had also shown that adding back the previous forecast error form of intercept correc-
tion also worked by differencing, but only the next forecast error not all the variables. That even-
tually led to the idea of differencing the variables in the estimated cointegrated representation, so
retaining the difference of the EqCM and not just differences of variables (see e.g., Hendry, 2006)
and from there to a class of forecasting devices that were robust after location shifts (see e.g.
Castle et al., 2015). The important distinction is between differencing before (so no EqCM), or
after, estimation. Moving estimation windows offered another possible route, but seemed to rely
on a good guess of the appropriate length to trade off rapidly dropping past shifts with increased
estimation uncertainty.

The alternative of trying to forecast location shifts before they occurred was another possible
solution, but the problem of reduced funding for forecasting kicked in, and it was hard to get
support for a research program, although the Leverhulme Foundation generously funded a research
professorship for me over 1995–2000 to work on that issue, from which several ideas emerged.
These included research showing that leading indicators did not seem to work well (see Emerson
and Hendry, 1996), that co-breaking for location shifts had close parallels with cointegration for
stochastic trends (see Clements and Hendry, 1999, and Hendry and Massmann, 2007), and that a
general theory of forecasting from mis-specified models in wide-sense non-stationary process was
viable. Castle et al. (2010) later investigated improving forecasting by modelling a break during
its trajectory, but found robust devices did as well.

More recently, we highlighted the impacts of location shifts on economic theory (see Hendry
and Mizon, 2014, and https://voxeu.org/article/why-standard-macro-models-fail-crises), vitiating
proofs of the law of iterated expectations and the unbiasedness of conditional expectations, and
revealing that so-called ‘rational expectations’ are irrational when location shifts occur. Indeed,
the lack of time dating of expectations implicitly assumed a stationary process.

Another issue where my views have changed greatly concerns the role in system forecasts of
unmodelled variables that are forecast off-line. The open-model taxonomy in Hendry and Mizon
(2012) establishes that stringent conditions need to be met when facing shifts to ensure such fore-
casts are an improvement over just omitting unmodelled variables. This is a surprising result, but
then so are many others we have discovered about forecasting, such as that all parameters in a
model can be greatly changed with essentially no effects on forecasts provided the long-run means
are unaltered.

Although MSFE comparisons were criticised above, it took a year or so to also discover their
lack of invariance to linear transforms, such as yt = β1zt + et to yt − zt = (β1 − 1)zt + et, and to
multi-step forecasts as in Clements and Hendry (1993), eliciting a storm of comment. A measure
invariant to both types of transform, the determinant of the generalized forecast-error second-
moment (GFESM), was proposed, but seemed non-operational for multiple forecast horizons H
and many endogenous variables N , from needing sufficient forecast-error observations to ensure
the NH × NH matrix was non-singular. However, Hendry and Martinez (2017) show how to
extend its use to relatively few forecast errors.

The benefits of combining forecasts from different models versus seeking an encompassing
framework are also still under debate, as is the choice between parsimonious models and factor
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models based on huge data sets with more sources of information, capturing both increased T
at higher frequencies and larger N . Both issues will probably remain unresolved when different
sources and magnitudes of unanticipated location shifts in different parts of economies continue
to happen. Much the same can be said of the role of model selection for forecasting, a topic that
we are still researching: see Castle et al. (2021).

The hope expressed after Figure 7 that a ‘reasonable idea of the uncertainties inherent in pre-
dictions could help produce better policy, and more informed discussion thereof’ has partly oc-
curred with the Bank of England introducing fan charts to represent their view of the likely range
of forecasts, an excellent step forward in emphasising uncertainty. Unfortunately, the Great Re-
cession puts a damper on the idea that doing so would improve policy. Moreover, the uncertainty
due to incorrectly measured initial values is rarely included, although the vast increase in research
on ‘nowcasting’, and its use in practice, is a very welcome development, where our approach is
summarised in Castle et al. (2018).

Measurement errors and their variances in non-stationary processes have remained a topic of
considerable interest to me, partly analyzed in Hendry (1995) and more recently in Duffy and
Hendry (2017). The comments in section 8c are formally analyzed in the context of growth and
location shifts, and confirm the ability to determine long-run connections with short-run dynamics
being contaminated.
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