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This paper analyzes wars of attrition with many players. Examples of

such wars are common, and are sometimes referred to as “industry shake-

outs”. For example, five to six firms are committed to making major invest-

ments in wireless phone service in each United States market. While Los

Angeles and New York will be able to accomodate this number, many other

markets are probably natural oligopolies that can profitably support only

three or four firms. A similar battle is taking place in the Canadian long

distance market.1

Battles to control new technologies often resemble wars of attrition. For

example, five firms—Zenith, Thomson, AT&T, General Instruments, and

Philips Electronics, initially worked on competing HDTV standards, and

Microsoft, Netscape, and Lotus are fighting to dominate the “groupware”

that is used within corporate intranets. In interactive Videotex, the seven or

more competing national standards that emerged in the 1970s were reduced

to three by 1984 after long negotiations in the CCITT (the international

standards organization in telecommunications), but the battle between these

three incompatible systems is still unresolved. Remarkably, we have gone

from over 300 word processing programs ten years ago to just WordPerfect

and Word.2

There are now three competing standards for digital wireless phone sys-

tems in the United States—CDMA (code division multiple access), TDMA

(time division multiple access), and GSM (global system for mobile com-

munications, the European standard). Consumers who purchase one type

of handset will not be able to make or receive calls over a network that

uses a different technology. While several large manufacturers have now de-

cided to incur the expense of producing to three standards, others have a

vested interest in the outcome; an estimated $29 billion annual market for

equipment is at stake. The simultaneous development of three standards has

1The battle for long distance market share [in Canada] has turned into a war of attri-
tion....... Losses are piling up ....... Analysts and industry officials predict the ranks of
Canada’s long distance companies will shrink sharply.” See The Wall Street Journal, July
25, 1997 p. B4.

2Some specialized programs like Scientific Word also exist, but the other mass-market
word processors, like Xywrite and Wordstar, have vanished.
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deprived the industry of the scale and manufacturing economies of a single

standard, and reduced demand by increasing consumer uncertainty. The re-

sult has been much lower volumes and slower growth than in Europe for the

whole industry—including firms that have no interest in which standard is

adopted.3, 4

Multiple-player wars of attrition are also prominent in politics. In Au-

gust, 1993 the United States Congress passed the Clinton Administration’s

budget by the narrowest possible margin; if a single supporter in either the

House or Senate had switched their vote, the plan would have been defeated.

But although many Democrats would have preferred to vote against this

unpopular bill, they were unwilling to see the new Democratic President de-

feated on a measure of such importance so, in the words of the New York

Times “one member after another reluctantly fell into line to provide the 218-

216 victory” in the House of Representatives.5 ,6 The last Congresswoman to

vote for the budget bill virtually ensured her defeat in the next election by

supporting the President;7 while she was promised a good job in the Admin-

istration in return for sacrificing her seat in Congress, it seems clear that

she was a big loser relative to other Democrats who were then able to vote

against the bill without affecting the outcome.8 Similarly, the bill was ap-

proved by the Senate, after an unusually protracted debate, by 50 votes plus

3We are grateful to Preston McAfee for suggesting this example.
The Cellular Telephone Industry Association decided in 1989 to adopt TDMA as the

U.S. standard but was persuaded in 1993 to sanction CDMA as an alternative standard,
contributing to the current upheaval. Obviously it will be better for the industry if the
“right” standard wins, but many firms would be better off with any of the three standards
than with the current confusion. See Business Week, February 24, 1997, p. 44, and June
2, 1997 p.132.

4Two recent papers, Farrell (1993) and David and Monroe (1994), have already argued
that the way firms negotiate in industry standard-setting committees is most appropriately
modeled as a war of attrition. See also Farrell and Saloner (1988).

5This is the narrowest possible margin, since in the U.S., unlike some other countries,
representatives do not wish to abstain on a measure of this importance.

6See The New York Times, August 6, 1993, section 1 p.7.
7The bill was especially unpopular in very affluent districts like Marjorie Margolies-

Mezvinsky’s. The Republicans chanted “Bye-bye Marjorie” as she cast the final vote in
favour, and she was indeed comfortably defeated in the 1994 election.

8It is not known how many additional representatives would have voted for the Presi-
dent if their votes had been required. Representatives’ incentives were, of course, to deny
any willingness to do this, but even so it was reported that Thornton of Arkansas and,
perhaps, Minge of Minnesota were available to vote yes if necessary.

3



the Vice-President’s casting vote to 50.9

Until now, the war of attrition literature10 has focused on games with two

players, or the straightforward generalization to N +1 players competing for

N prizes. While many of the best examples do involve only two players,

multiple player games are also important. We consider a generalized war of

attrition in which N +K players are competing for N prizes, so that K must

exit for the game to end.

Our examples have highlighted an important issue in modeling the gener-

alized war of attrition. In a natural monopoly (or oligopoly) setting, once a

firm has conceded defeat it drops out of the game and stops paying costs. In

a battle over standards, as with PCS, even a firm that does not try to enforce

its own standard will continue to bear higher costs until the remaining firms

agree on a common standard (because of reluctance of consumers to buy and

potentially higher manufacturing costs). With just two firms (or N +1), this

problem never arises because once any firm drops out the war automatically

ends.

To make the distinction clear, consider the following example: The chair-

man of the economics department calls a meeting, and says that he needs

five volunteers to serve on a committee. The meeting will not end until the

committee is chosen. In the “natural oligopoly” game, a faculty member is

allowed to leave the meeting as soon as he agrees to serve on the committee.

In the “standards” game, everyone must stay in the meeting until the whole

9In our interpretation of this as a war of attrition for the prizes of being among the
non-supporters of a successful bill, individual Democrats’ costs of holding out included the
private costs of enduring pressure from the Administration, and the public costs, borne by
all the Democrats, of delaying passage of the bill. The delay increased public frustration
with the political process, delayed the bill’s benefits, increased the probability of the bill
failing (perhaps through the President giving up on it) and left the Democrats less time
to work on the rest of their agenda.

Of course, we are abstracting away from many important features of the problem such
as coalition-formation, vote-buying, and bargaining in which the legislators can actually
affect the details of the bill. For an excellent survey of the rent-seeking literature, which
encompasses some of the collective aspects, see Nitzan (1994).

10The war of attrition has also been used to describe labor strikes (see, e.g. Kennan and
Wilson (1989)), litigation, and biological competition (see, e.g. Maynard Smith (1974),
and Riley (1980)), and the process of agreement to macroeconomic stabilizations (see, e.g.
Alesina and Drazen (1991) and Casella and Eichengreen (1990)). The classic reference on
industrial competition is Fudenberg and Tirole (1986). For a more general survey of rent
seeking see Nitzan (1994).
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committee is selected. Obviously, there is much less incentive to concede

quickly in the second game.

The natural oligopoly case yields a striking result: K − 1 firms will exit

immediately, leaving only N + 1, or one too many firms to battle for the N

prizes.11 To understand the result, imagine that when K > 1 exits are still

required for the game to end, a player is within ε of his planned dropout time.

Then the player’s cost of waiting as planned is of order ε, but his benefit is

of order εK since only when K other players are within ε of giving up will

he ultimately win. So for small ε he will prefer to quit now rather then wait,

but in this case he should of course have quit ε earlier, and so on. So only

when K = 1 is delay possible. This result helps explain why so many wars

of attrition, like Kodak vs. Polaroid in instant photography and Microsoft

vs. Netscape in web browsers, quickly devolved into two-horse races.

In the standards version of the game, in which all players pay until the

game ends, even if they have already conceded, the result is perhaps equally

surprising: players’ strategies are independent of K and of other players’

dropout behaviour. Why does this kind of strategic independence arise? Be-

cause, as before, when there are still K > 1 too many firms, a player within

ε of his planned exit knows he has no chance (to first order) of winning. So

since in this case quitting early does not affect the rate at which the firm

pays costs, the firm would quit early if he thereby shortened the expected

length of the whole game. Only if the firm’s exit decision has no effect on the

length of the whole game will it be willing to exit at the “correct” equilibrium

time. So no firm can either affect, or be affected by, any other firm’s dropout

behaviour.

In our general model, which encompasses both the natural oligopoly and

the standards versions as special cases, each player’s value of surviving in

the market is private information to that player. However we always get

perfect sorting. Thus even in the one too many limit in which the field is

immediately sorted down to N + 1 players, it is the K − 1 weakest players

11One example of this game is that Avinash Dixit every year offers a $20 prize to the
student who continues clapping the longest at the end of his game theory course. Our
analysis shows that if they have understood the material, no more than two students
should continue applauding after the time when everyone would otherwise have stopped.
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that leave in zero time.

Section 1 presents the model. Section 2 analyses the general case. Sec-

tions 3 and 4 discuss the one too many result and strategic independence

respectively. Section 5 illustrates the analysis with an example inspired by

the 1993 budget battle, and Section 6 concludes. Formal proofs are collected

in the Appendix.

1 The model

There are N + K risk-neutral firms in a market. As long as a firm continues

to compete, it pays a cost that is normalized to 1 per unit time. If it exits,

it subsequently pays a cost c > 0 per unit time until a total of K firms

have quit.12 If a firm i is one of the N firms which survives, then it wins

a prize of vi which is private information to firm i at the beginning of the

game.13 The values vi are drawn independently from the distribution F (v),

with F (V ) = 0, F (V ) = 1, V > 0 and V < ∞. We assume F (·) has a

strictly positive finite derivative everywhere. It will be convenient to write

h(v) for the “hazard rate” f(v)
1−F (v)

. We also write vj for the jth highest of the

N +K firms’ values, and E(vj) for the expectation of this value. We restrict

attention to symmetric equilibria.

At any point of the game let N + k be the remaining number of firms

(so k more firms must exit before the game finishes), let v be the lowest

possible remaining type conditional on all other firms having thus far followed

(symmetric) equilibrium strategies, write T (v; v, k) for the additional amount

of time a still-surviving firm of type v will wait before exiting if none of the

other remaining N + k firms exits beforehand, and P (v; v, k) for the firm’s

probability of being among the N ultimate survivors.

12Typically we expect c to be no more than 1, but note 30 suggets a context in which
it might exceed 1. Another example in which c would exceed 1 is a “contributions” game
in which N people must each pay for one stage of a building project before it yields any
benefits, and discounting means earlier contributions cost more than later ones.

13If flow costs differ among firms, we can simply reinterpret vi as the ratio for player i
of the prize value to the flow cost, since this ratio is all that matters to any firm. So all
our results will still go through. (Units for measuring costs are of course then different for
different firms so that the flow rate of costs is measured as 1 per unit time for each.)
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2 The general solution

Lemma 1: In any equilibrium, for all v and all k, T (v; v, k) is strictly in-

creasing in v and P (v; v, k) equals the probability that v is one of the N

highest values conditional on N + k − 1 other firms’ values exceeding v.14

Lemma 1 follows because higher-valued firms exit later in a symmetric

equilibrium.

Lemma 2: There is at most one equilibrium of the game.

The reason for Lemma 2 is that the difference between the expected sur-

pluses of any two types is uniquely determined by standard incentive com-

patibility arguments.15 But, since any type’s probability of winning a prize

is fixed by Lemma 1, the difference between the two types’ waiting costs

is therefore also uniquely determined. However, if there were two different

equilibria specifying different quitting times T (v; v, k), these two equilibria

would yield different differences between types’ waiting costs, for at least one

pair of types.16

Lemma 3:17 The unique symmetric perfect Bayesian equilibrium18 of the

subgame in which just one more exit is required to end the game is defined by

T (v; v, 1) =

∫ v

v

Nxh(x)dx (1)

14So P (v; v, k) =
∑N+k−1

j=k
(N+k−1)!

(N+k−1−j)!j!

(
F (v)−F (v)

1−F (v)

)j (
1−F (v)
1−F (v)

)N+k−1−j

15The absolute level of a player’s surplus cannot be determined prior to determining
the actual equilibrium because, in contrast to many problems in which the bottom type’s
surplus is fixed at zero, in our problem the bottom type receives negative surplus for c > 0.

16This is easy to see if k = 1 (i.e. when the game ends after one more quit). So the
k = 1 subgame is unique. But then if k = 2, waiting costs are fixed after one more quit,
so two different functions T (v; v, 2) would yield different differences in total waiting costs
for some pair of types, so the k = 2 subgame is also unique. And so on.

17This result can also be found in Bliss and Nalebuff (1984), Nalebuff (1982), and
elsewhere.

18For this (k = 1) case this is also the unique symmetric Nash equilibrium, since each
firm knows that its decision to exit is only relevant in the case in which no other firm has
previously exited, so the game is strategically equivalent to a static game in which firms
simultaneously choose exit times.
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The intuition is straightforward: at each moment the marginal firm with

type v faces the prospect of paying an extra T ′(v; v, 1)dv to outlast any firms

with types between v and v+dv, and equates these costs to the value of being

a winner, v, times the probability,
Nf(v)dv

1− F (v)
= Nh(v)dv, that one of the other

N remaining firms will in fact be revealed to have a type below v + dv. So

T ′(v; v, 1) = Nvh(v). Furthermore T (v; v, 1) = 0, since a player of type v will

never win and so exits immediately. So T (v; v, 1) = 0 +
∫ v

v
T ′(x; v, 1)dx =∫ v

v
Nxh(x)dx.

We can now state our main result.

Proposition: The unique symmetric perfect Bayesian equilibrium of the

Generalized War of Attrition is defined by

T (v; v, k) = ck−1

∫ v

v

Nxh(x)dx (2)

The intuition is that when k > 1, quitting ε early or late would not, to

first order, affect type v’s probability of winning (since only when k other

firms are within ε of quitting can v win in the next ε). But quitting does slow

down the rate at which v pays costs to fraction c of the previous rate, so for

v to be indifferent about quitting, it must also slow down other players’ rates

of quitting by the same fraction c.19 That is, T ′(v; v, k) = cT ′(v; v, k − 1),

hence also T ′(v; v, k) = ck−1T ′(v; v, 1) = ck−1Nvh(v).

So, for example, if N = 1, K = 3 and c = 1
2
, the equilibrium goes through

types four times as fast as in the two firm game (N = K = 1) until one firm

drops out, then twice as fast as the two firm game until a second firm drops

out, and then finally at the speed of the two firm game until the final exit.

Notice that a feature of the equilibrium is that the K − 1 lowest-valued

firms are actually indifferent about staying past their equilibrium dropout

points; each would be willing to delay until K−1 others have quit (assuming

19Of course, this argument is not complete since it only shows other players slow down
to fraction c on average.
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each thought the others were following the equilibrium strategies). Of course,

if any one of these firms were to delay its departure until K − 1 others had

left, that would speed the game and benefit everyone else.20

Note also that, by contrast, the highest-valued losing firm (the only loser

in the standard N + 1 firm model) would hurt everyone else by delaying

its exit, so the equilibrium length of the game is non-monotonic in players’

valuations. For example, a game with two “tough” players and one “weak”

player competing for one prize takes longer than either a game with three

tough players or a game with one tough player and two weak players.

Expected Time Between Exits

The expected time between successive departures increases in later stages

for three separate reasons. First, there are fewer players who might leave

(N +k falls). Second, the remaining players are stronger (E(vN+k) rises as k

falls). And third, each exit must slow the game (ck−1 rises as k falls) in order

to make the next firm which drops out indifferent between paying the full

costs of remaining in the game a little longer or paying the lower costs per

period of being out. The Corollary to our Proposition demonstrates exactly

these features:

Corollary: The expected time taken to reduce from N +k firms to N +k−1

firms is

Nck−1 E(vN+k)

N + k
(3)

The Appendix offers a purely algebraic proof of the Corollary. However,

an approach that is more economic (and economical) is to consider a game

in which, after all but j players have been revealed as having values above

vj+1, as in our problem, the remaining players fight a standard one-stage

war of attrition for j − 1 prizes. Since this game requires just one more

exit, lemma 3 tells us that the time until the lowest of the j remaining firms

(with value vj) quits is
∫ vj

vj+1
(j−1)xh(x)dx. But by the Revenue Equivalence

20Of course, if c > 1 each firm that leaves speeds up the game, so leaving late hurts
others.
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Theorem the expected costs per player must be the same as in an English

auction, in which (j−1) players win at price vj, that is, E{(j−1)vj/j}.21 So,

E
{∫ vj

vj+1
xh(x)dx

}
=

E(vj)

j
. Now in our problem the expected time between

the exits of the (j + 1)st and jth highest-value firms (who have actual values

vj+1 and vj) is, from (2), E
{

cj−(N+1)
∫ vj

vj+1
Nxh(x)dx

}
, so substitution yields

the corollary.

Expected Length of the Game

Simple summation of (3) yields

Corollary: The expected length of the Generalized War of Attrition is

N
N+K∑

j=N+1

cj−(N+1) E(vj)

j
(4)

Firms’ Costs Varying with k

It is easy to extend the model to allow firms’ costs to be a function of k.

(For example, in an oligopoly context losses are probably increasing in k.) If

costs are `k times as great as in our model when k more firms are required

to exit, then equilibrium requires that types leave `k times as fast at any

point of time. Thus the total costs firms incur in the war of attrition are

independent of `k.

Discounting

It is also easy to see that discounting would have no effect on how firms

play the game at any moment of time, since discounting is just equivalent

to there being some exogenous flow of probability that the game will end

and firms will stop accruing further costs or benefits. So our results and our

formulae for T (v; v, k) are unchanged by discounting, but discounting makes

the costs of the war of attrition even greater relative to the discounted value

of the prizes.

21We can use the Revenue Equivalence Theorem because in both a one-stage war of
attrition and an English auction a player who quits immediately receives an expected
surplus of zero.
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Deadlines

In many contexts there is a deadline at which the game ends and no-one

wins a prize.22 Since this corresponds to infinitely heavy discounting taking

place at the moment of the deadline, this too has no effect on how the game

is played prior to the deadline.

3 The special case c = 0: “ One Too Many”

In the limit as c approaches 0, firms drop out arbitrarily fast until only N +1

remain. That is, if N firms can be profitable in a market and dropouts pay

no costs after exiting, then competition in the symmetric equilibrium will

immediately shake out to just one too many firms to be profitable.23

For example, when there is just one winner, competition effectively re-

veals the third-highest value, that is, v3, immediately, and then yields a

conventional two firm game beginning with v = v3.

An alternative way of deriving this result that should appeal to auction

theorists is to consider the expected total costs paid by the remaining two

firms after the buyer with the third-highest value drops out. The Revenue

Equivalence Theorem tells us that these costs must be the same as the ex-

pected costs in a second-price auction between these firms, namely the ex-

pectation of the second-highest value, v2.
24 Compare this with the expected

22For example, the government imposes a standard that is no-one’s preference, or firms
go their separate ways and choose different standards, or the industry dies. Of course
there are other possible models of deadlines e.g. winners are chosen randomly (e.g. by
whips in a voting context), or everyone pays a cost at the deadline (e.g. the bill fails to
pass which is everyone’s worst outcome).

23In an open-loop equilibrium (i.e., when firms choose an exit time at the start of the
game that cannot be revised based on when other firms quit) the one too many result
does not arise; see Krishna and Morgan (1997) who analyse an open-loop c = 0 model.
Hillman and Riley (1989) analyse an all-pay auction without private information but with
asymmetric bidders and show that just two bidders make positive bids. However, this
“twoness” result does not survive if the bidders are symmetric (as ours are); in this case
there is a symmetric equilibrium in which all bidders make positive bids (see also Baye
et al (1996)). Nor does Hillman and Riley’s “twoness” result survive in a “second-price
all-pay” auction, i.e. an all-pay auction except that the winner pays only the second bid
(as in our war of attrition), since this is equivalent to the open-loop c=0 model analysed
by Krishna and Morgan.

24See Myerson (1981) and Riley and Samuelson (1981) for the earliest statements of the
Revenue Equivalence Theorem. Our 1994 paper, Bulow and Klemperer (1994), states and
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total costs paid by all the firms in the initial game with K eventual losers.

Again by Revenue Equivalence with the second-price auction, total expected

costs must be the expectation of v2 in the initial game. So the expected costs

paid to get from the initial game to the subgame with two firms remaining

must be zero.25

To understand the result observe that if there were positive delay while

K > 1 exits were still required, then a firm that quit ε earlier than it had

originally planned would save ε in waiting costs but would reduce its prob-

ability of winning by an amount of order εK . So all firms would drop out at

least a little earlier than planned, so firms must in fact quit without delay

until only a single firm remains in excess of the number who can ultimately

survive.

Fudenberg and Kreps (1987) and Haigh and Cannings (1989) have already

considered the case c = 0 in the special case in which all firms’ values are

equal (i.e., every firm i has value vi = V = V ), so there is no private

information.26 Then the symmetric equilibrium (again in continuous time)

is in mixed strategies, and all firms mix across all possible dropout times.27

In this case, if a firm survives to be one of the final N + 1 firms in the

market, its expected future payoff is zero (since it is indifferent to dropping

out immediately). But it can also earn zero by dropping out at the beginning

of the entire game. Therefore, firms will only be willing to wait to become

applies the theorem for a setting which, like this one, has multiple objects that are sold in
a dynamic game.

25The reason this logic only holds when c → 0 is that this assures that the expected
surplus of a firm with type v is zero, since the firm can exit immediately at no further
cost. This in turn guarantees that the expected surplus of a firm with type v equals∫ v

v P (x; v, k)dx (see equation (8) in the appendix), and hence that the expected total costs
paid by all firms (which must equal the sum of the expected gross income to the survivors
less the sum of firms’ expected surpluses) are the same regardless of whether there is a
second-price auction or a symmetric war of attrition in any subgame. If c > 0, then the
expected surplus of a firm with the lowest possible type is negative, so the war of attrition
will be more costly to the firms, in expectation, than a second-price auction.

26Haigh and Cannings consider exactly this game. Fudenberg and Kreps’ model is more
complex, but the situation their weak entrants face has essentially these features (see their
section 5).

27See Fudenberg and Tirole (1991, p230-232) for discussion of how the mixed strategy
equilibrium of the two-player war of attrition with complete information corresponds to
the equilibria of wars of attrition with incomplete information in which every type plays
a (different) pure strategy.
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one of the final N + 1 firms if the cost of waiting is zero—that is, the time

that it takes to reduce the field to N + 1 must be zero regardless of K.

Note that, strictly speaking, the game has no symmetric equilibrium ac-

tually at the limit c = 0. Our argument has made clear that there cannot be

an equilibrium in which the types separate with all except the lowest type

waiting a strictly positive length of time. But nor can there be positive prob-

ability of any firm quitting in zero time, since in symmetric equilibrium this

would imply positive probability of all firms quitting in zero time, so every

firm would do better to wait a little (see Lemma 1).28

4 The special case c = 1: “ Strategic Inde-

pendence”

Now consider the special case in which all firms pay full costs until the game is

resolved. This is the polar opposite of the previous case, and can be thought

of as the standards case, where all firms lose until a standard is established,

with losses independent of whether a firm is one of the remaining competitors

for establishing the standard.

When c = 1, the Proposition yields that types leave at the rate

1

T ′(v; v, k)
=

1

Nvh(v)

when the marginal remaining type is v, so we have “strategic independence”.

That is, each firm chooses the same dropout time as if it were in a game with

just N +1 firms and N prizes, independent of the actual number of remaining

firms. Having chosen its dropout time at the beginning of the game, the firm

then sticks with it.

The intuition is that because a firm’s flow costs are unaffected by drop-

ping out before the end of the game, and its probability of winning is also

unaffected (to first order) by small changes in its exit time when K > 1 exits

28Haigh and Cannings get around the problem of the absence of a symmetric equilibrium
in their model by imposing a series of instantaneous randomizations to eliminate k − 1
bidders in zero time (and Fudenberg and Kreps take a similar approach). This seems very
natural in their special case in which all players have identical values. To the best of our
knowledge our paper is the first to allow c > 0, and so to interpret the c = 0 case as the
limit as c→ 0.
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are still required to end the game, the firm’s exit decision cannot affect the

length of the game. So other firms’ decisions are unaffected by this firm’s

actions.

As for the “one too many” case, it may help in understanding this result

to consider the mixed strategy equilibrium of the limiting case of our game

in which all firms’ values are known to be equal. In this case firms must be

indifferent to dropping out at any time prior to the end of the game. Thus a

firm must be indifferent between dropping out now, when more than N + 1

firms remain, or waiting until exactly N + 1 remain and then dropping out

immediately, or dropping out at any time in between. Since in any of these

cases the firm does not win and pays costs proportional to the length of the

game, the length of the game must be independent of the firm’s choice. So

the dropout decisions of the first K−1 firms to exit do not affect the decisions

of the remaining firms.

The length of the “strategic independence” game is strictly a function of

the N + 1st highest value, but the larger K is the longer the game will take

in expectation, because the expected value of the N + 1st highest value rises

as N + K rises.

Both the “one too many” and the “strategic independence” games take

equally long to reduce from N +1 firms down to N . The difference is that in

the “one too many” game we get down to N+1 firms immediately, and so only

have to incur costs running through the types between the N + 2nd highest

value and N + 1st highest value. However, with “strategic independence” all

types must be run through in real time, and the amount of time required for

the industry to shake down from N + K firms to N + 1 may far exceed the

time needed to get from N + 1 to N .

5 An example

We illustrate our model with an example inspired by the 1993 budget battle.

Assume 51 senators would each like to see a bill passed but would prefer not

to have to vote for it. Each senator has a value independently drawn from

a uniform distribution on [0,V ] of being the one person who need not vote

14



for the bill. So N = 1 and K = 50. We normalise units of time so that the

costs of holding out are 1 per unit time for those who have not yet pledged

support.

In the “strategic independence” case all 51 senators suffer political costs

equally until the impasse is resolved, whether or not they have themselves

given in. In this case c = 1, so using (4) the expected delay before passage of

the bill is ≈2.55 V .29 So even the “winner” suffers costs that are on average

more than two and one half times as great as his prize!30 Obviously players

should do everything they possibly can to change such games.31

At the other extreme, consider the “one too many” case in which a sen-

ator’s only costs are his personal costs of withstanding administration pres-

sure, and these costs stop as soon as he knuckles under. In this case, as

we have seen, 49 senators give in to the administration immediately, while

the two with the highest values hold out in a standard two-player war of

attrition. Here c = 0, so using (4) the total expected time is just half of

the expected value of the lower of the holdouts, 1
2
E(v2), that is, since F (·) is

uniform, 25
52

V .32,33

29For the uniform distribution E(vj) =
(
1− j

N+K+1

)
V , so (4) implies the ex-

pected delay is NV
∑N+K

N+1

(
1
j − 1

N+K+1

)
which with N = 1 and K = 50 yields

V
(
− 50

52 +
∑51

j=2
1
j

)
≈ V

(
−2 +

∑53
j=1

1
j

)
≈ V (−2 + log 53 + γ)in which γ (≈ .58) is the

Euler number.
30Of course, this does not mean that a player should refuse to play. It is common

knowledge that each player anticipates negative surplus relative to the bill passing imme-
diately with his vote, but legislators may still obtain positive surplus relative to the bill
not passing at all.

In fact, the legislators would be in an even worse game than this if c > 1. For example,
if pledging one’s vote increases the lobbying pressure and hostility one faces from those
opposed to the bill, then costs are largest for those who have already pledged.

31This may help explain the institution of whips, whose job it is to determine the
allocation of prizes (that is, who should be permitted not to vote for a particular measure)
without recourse to a war of attrition. Whips will not necessarily select the highest valuers
of the prizes but even uninformed randomisation is highly desirable relative to these games.
Whips seem to be more effective in resolving smaller issues than larger ones, such as the
budget bill, for which it is harder to persuade losers that they will be compensated on
future issues.

32We can also obtain this result directly without need of (4) by using the Revenue
Equivalence Theorem which says that the expected total costs incurred (that is, twice the
expected time) must be the same as in an English auction, that is, E(v2) = 50

52V . (The
Revenue Equivalence Theorem applies here because a player who quits immediately gets
zero surplus in this case.)

33With c = 0, the total resources used are E(v2) while the expected value of the prize is

15



In the “one too many” case, of course, all the time is spent waiting for

the last vote, but observe that even in the “strategic independence” case,

the first few votes come in relatively quickly (the first 10 votes take less than

1% of the total time on average) while the last few votes take much longer

(the last 4 votes take almost half the total time in expectation). The typical

case will lie between these extremes. Thus our model both explains why

political decision making can sometimes take so long, and why, even when

agreements seem close to complete, the hunt for the last few votes can often

seem so excruciatingly slow.34

6 Conclusion

We study wars of attrition in which two or more players must exit. Except in

the final stage, a player’s departure will not end the game, and a player may

continue to incur at least some costs even after he has conceded. Therefore,

except in the final stage, by the time a player exits he knows a small delay

in conceding will not allow him to win, because it is so unlikely that two or

more others will exit before him. So the player becomes solely interested in

minimizing his costs, and in equilibrium a small change in exit strategy must

have no effect on his expected costs.

If costs are as high for those who have already conceded as for those who

continue to fight, then there is no incentive to drop out early. For a player to

be satisfied with his equilibrium exit time, his departure must neither speed

nor slow the ultimate resolution of the game. So each player’s exit behavior

is unaffected by the number of other competitors and their actions. We call

this “strategic independence.” Examples where this may occur are battles

over standard setting and building voting majorities.

If a player does not pay any costs after he has conceded, as in a natural

E(v1), so in the limit in which all players’ values are equal there is complete rent dissipation
independent of the number of competitors, just as in rent-seeking models such as Hillman
and Samet (1987) who analyse an all-pay auction for a prize that is worth the same to
all. Of course for larger values of c, and k > 1, expected rent dissipation in our model
typically exceeds the expected value of the prize, as in the c = 1 example above. Expected
rent dissipation, as a fraction of the value of the prize, is typically increasing in k and is
always increasing in c.

34Multilateral international treaties (e.g. GATT) often seem to illustrate this.
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monopoly game, the market will immediately and efficiently sort down to the

final stage. That is, in equilibrium we should never observe more than “one

too many” firms competing for the prizes.

Even with strategic independence, departures occur at a faster rate in

the early stages, because at the beginning of the game there are more, and

weaker, players who might concede. If costs are lower for those who have

exited than for those still fighting, so there is an incentive to depart early,

this effect becomes even more pronounced. Each exit must slow the game

sufficiently to make the next dropout indifferent between paying the full

costs of remaining in the game a little longer or paying the lower costs per

period of being out. Of course in the limit when players pay no costs after

conceding, all but the last departure is instantaneous. So the model explains

why rounding up most of the necessary votes for a bill might take very little

time, but gathering the last few votes may be time-consuming and costly.
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Appendix

We write C(v; v, k) for the firm’s expected future delay costs over the
whole of the rest of the game (net of delay costs thus far incurred), and
S(v; v, k) for the firm’s expected future surplus over the whole of the rest of
the game (so S(v; ·, ·) ≡ vP (v; ·, ·)− C(v; ·, ·)).

Proof of Lemma 1: A higher-value type of a firm cannot exit before a lower-
value type of the same firm would exit. (If a low type gets the same expected
surplus from strategies with two different probabilities of being an ultimate
survivor, the high type strictly prefers the high-probability strategy, so the
high type cannot choose a strategy with a lower probability of survival than
the low type.) Also, at no moment of time does any firm exit with strictly
positive probability. (By symmetry, all firms would have strictly positive
probability of exit, but then any firm would strictly prefer exiting just after
this time to exiting at this time). So T (·; ·, ·) is strictly increasing in v for
all v and k, and a firm ultimately survives if and only if k or more of the
remaining N + k − 1 other current survivors have lower values than it. So

P (v; v, k) =
N+k−1∑

j=k

(N + k − 1)!

(N + k − 1− j)!j!

(
F (v)− F (v)

1− F (v)

)j (
1− F (v)

1− F (v)

)N+k−1−j

(5)

�

Proof of Lemma 2:35 The proof is by induction. We assume that there is
at most one equilibrium of any subgame in which there are N + k − 1 firms
left, and show that this implies at most one equilibrium with N + k firms
remaining.

Consider the subgame defined by k and v. (This is well-defined by Lemma
1). There is no finite period of time in which there is zero probability of exit.
(If there was, then a type that was due to exit at the end of this period
would do better to exit at the beginning of this period; because there is a
unique equilibrium after the next exit, its time cannot affect the subsequent
development of the game.) So T (v; v, k) is continuous, and

T (v; v, k) = 0 (6)

so also
S(v; v, k) = −C(v; v, k). (7)

Now note that since in equilibrium no type of firm can gain by following
any other type’s exit rule,

S(va; v, k) ≥ S(vb; v, k) + P (vb; v, k)(va − vb) for all va, vb ∈ [v, V ].

35This is the most elegant proof we know. An alternative, but here rather cumbersome,
approach is to first show the monotonicity and continuity of T (·; ·, ·) in v and using these
show the differentiability of T (v), so that the first-order conditions characterize the equi-
librium uniquely. (As in our proof, an inductive argument is required; for arguments along
these alternative lines see the Appendix of Gul and Lundholm (1995) or our own working
paper (joint with Huang), Bulow et al (1996).)
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So S(v; v, k) has derivative dS/dv = P (v; v, k) and therefore

S(v; v, k) = S(v; v, k) +

∫ v

v

P (x; v, k)dx (8)

and, noting (7),

C(v; v, k) = C(v, v, k) + vP (v; v, k)−
∫ v

v

P (x; v, k)dx. (9)

So (9) and (5) uniquely determine C(v; v, k), since C(v; v, k) equals c times
the expected length of the subgame after v quits and leaves (N +k−1) firms
remaining, and the equilibrium of this subgame is, by assumption, unique.

We can now show that there is at most one equilibrium T (v; v̂, k). Sup-

pose instead that there are two equilibria with T̃ (v; v̂, k) <
≈
T (v; v̂, k) for

some v. Then by the continuity of T̃ (v; v̂, k) and
≈
T (v; v̂, k), there exists

v ∈ [v̂, v) such that T̃ (v; v̂, k) =
≈
T (v; v̂, k) = τ and T̃ (v; v̂, k) <

≈
T (v; v̂, k)

for all v ∈ (v, v]. But if T̃ (v; v̂, k) and
≈
T (v; v̂, k) are both equilibria, then

T̃ (v; v, k) = T̃ (v; v̂, k)− τ and
≈
T (v; v, k) =

≈
T (v; v̂, k)− τ must be equilibria

of the subgame defined by v and k. But then T̃ (v; v, k) <
≈
T (v; v, k) for all

v ∈ (v, v], so any v ∈ (v, v] would expect lower waiting costs under T̃ (v; v.k)

than under
≈
T (v; v, k) before the next drop out (whether by this firm or

another firm) and the same waiting costs thereafter, since by assumption
equilibrium is unique after the next dropout. But this contradicts the fact

that C(v; v, k) is the same for both equilibria T̃ (v; v, k) and
≈
T (v; v, k). This

completes the inductive step, and so proves the result, since it holds trivially
when just N firms remain. 2.

Proof of Lemma 3: Given that all other firms use this exit rule, the
expected future surplus of a type v who behaves as a type v∗ is

U(v, v∗) = −(1− P (v∗; v, 1))T (v∗; v, 1) +

∫ v∗

v

∂P (x; v, 1)

∂x
(v − T (x; v, 1))dx

in which the first and second terms are v’s payoffs from the events that
he quits and survives, respectively, P (v∗; v, k) is defined by (5) and equals

1−
(

1− F (v∗)
1− F (v)

)N

when k = 1, and
∂P (x; v, 1)

∂x
=

Nf(x)

1− F (x)

(
1− F (x)

1− F (v)

)N

is

the density with which v wins and the lowest of the other N firms is of type
x. Thus (1) satisfies v’s first-order condition

∂U

∂v∗
(v, v∗) = 0 ⇒

− (1− P (v∗; v, 1))T ′(v∗; v, 1) +
∂P (v∗; v, 1)

∂v∗
v

=

[
−

(
1− F (v∗)
1− F (v)

)N {
T ′(v∗; v, 1)− Nvf(v∗)

1− F (v∗)

}]
= 0
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at v∗ = v. It satisfies the second-order conditions since it implies

sign
∂U

∂v∗
(v, v∗) = sign(v − v∗).

And it also satisfies the boundary condition, (6), T (v; v, 1) = 0. 2.

Proof of Proposition: Since Lemma 2 has shown that there is at most one
equilibrium, it suffices to show that no type, say ṽ, of any player wishes to
deviate from the strategy specified in (2), assuming all other players follow
the strategies specified in (2):

Assume ṽ stays in beyond the time when (2) requires him to quit. This
makes no difference to the costs the firm incurs in waiting for other players
to quit, since quitting would reduce its cost per unit time to a fraction c
of its pre-exit rate but would also multiply T ′(·, ·, ·) by 1

c
so the density of

others’ types that exit per unit time would be c times as great. So type ṽ
is indifferent about waiting until k = 1, and if ṽ quits before k = 1 he will
have neither gained nor lost from his deviation assuming other players play
according to the conjectured equilibrium. But at k = 1 type ṽ will strictly
wish to exit rather than stay, since ṽ will now be lower than the marginal
type, v, who exits immediately in the unique equilibrium of the remaining
subgame, and staying beyond this time would lose money in expectation (see
Lemma 3).

If instead ṽ quits before the time specified by (2), this would also make
no difference to the costs incurred in waiting for other players to quit, since
both this firm’s costs and the rate at which the other firms are exiting would
be multiplied by c. If by the end of the game (when k = 0) ṽ is lower than
the marginal type, v, who just exited (assuming equilibrium behaviour) then
ṽ’s total costs are unaffected by his deviation. If, however, ṽ > v then ṽ
would have lost money in expectation by its deviation, since by Lemma 3 it
would now prefer to still be in the game (with k = 1) and remain until the
time specified by (2).

So ṽ cannot gain by deviating from the strategy specified by (2), and (2)
specifies the unique equilibrium. 2.

Algebraic Proof of First Corollary: Using (2), the expected time be-
tween the exits of the (j + 1)st and jth highest-value firms (who have actual

values vj+1 and vj) is, E
{

cj−(N+1)
∫ vj

vj+1
Nxh(x)dx

}
, (in which vN+K+1 ≡ V ).

Now,

E

∫ vj

V

Nxh(x)dx

= lim
ε→0

∫ V−ε

V

(
N + K − 1

j − 1

)
(F (v))N+K−j(1− F (v))j−1(N + K)f(v)

∫ v

V

Nxh(x)dxdv

which, integrating by parts,

=lim
ε→0

{[[
N+K∑

i=N+K+1−j

(
N + K

i

)
(F (v))i(1− F (v))N+K−i

] ∫ v

V

Nxh(x)dx

]V−ε

V
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−
∫ V−ε

V

[
N+K∑

i=N+K+1−j

(
N + K

i

)
(F (v))i(1− F (v))N+K−i

]
Nvh(v)dv

}
.36

So

E

∫ vj

vj+1

Nxh(x)dx

= E

∫ vj

V

Nxh(x)dx− E

∫ vj+1

V

Nxh(x)dx

=lim
ε→0

{∫ V−ε

V

(
N + K

N + K − j

)
(F (v))N+K−j(1− F (v))jNvh(v)dv+

[(
N + K

N + K − j

)
(F (v))N+K−j(1− F (v))j

∫ v

V

Nxh(x)dx

]V−ε

V

}
which after noting that the second term is zero,37 and substituting h(v) ≡

f(v)
1−F (v)

and
(

N+K
N+K−j

)
= N+K

j

(
N+K−1

j−1

)
into the first term,

=

∫ V

V

(
N + K − 1

j − 1

)
(F (v))N+K−j(1− F (v))j−1(N + K)f(v)

N

j
dv,

=
N

j
E(vj),

which yields the result. 2.

36We are being careful to take lim
ε→0

∫ V−ε since lim
ε→0

∫ V−ε
Nxh(x)dx may be ∞.

37To show the second term is zero, it suffices to show that

lim
ε→0

[
1− F (V − ε)

] ∫ V−ε

V

Nxh(x)dx = 0.

A careful proof of this is as follows: define

gε(x) =
{

[1− F (V − ε)]Nxh(x) for V < x < V − ε
0 for V − ε < x < V .

So [1−F (V − ε)]
∫ V−ε

V Nxh(x)dx =
∫ V

V gε(x). Also note that gε(x) ≤ Nxf(x) = G(x) for

all x ∈ [V , V ], as 1−F (V−ε)
1−F (x) ≤ 1 for 0< x < V − ε. Now note that for all x ∈ [V , V ] we

have lim
ε→0

gε(x) = 0. Finally note that gε ≤ g′ε for ε < ε′. This implies that for any δ > 0

we can find ε0 > 0, such that gε(x) < δ for all 0 < x < V − δ and all ε < ε0. Therefore we

can deduce 0 <
∫ V

V
gε(x) < δV +

∫ V

V−δ
G(x). As we can get the right-hand side as small

as we desire, we obtain finally

lim
ε→0

∫ V

V

gε(x) = 0.
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