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Abstract

This paper discusses and documents the algorithms provided by SsfPack 2.0 (release date
March 30, 1998). SsfPack is a suite of C routines for carrying out computations involving the
statistical analysis of univariate and multivariate models in state space form. Functions are
available for prediction, filtering, moment smoothing, simulation smoothing and forecasting.
The headers of these routines are documented here. The emphasis is on documenting the
link we have made to the Ox computing environment. Therefore, SsfPack can be easily used
for implementing, fitting and analysing Gaussian and non-Gaussian models relevant to many
areas of econometrics and statistics. Some Gaussian illustrations are given.
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1 Introduction

This paper documents the package SsfPack 2.0 which carries out computations for the statistical
analysis of general univariate and multivariate state space models. SsfPack is a suite of C routines
collected into a library which can be linked to different computing environments. In particular,
it can be used in many areas of econometrics and statistics as will become apparent from the
illustrations given.

Standard econometrics and statistical packages such as SAS, STAMP, SPSS, PcGive, Splus
and Minitab have many canned options for the fitting of standard time series models. However,
when we work on new areas of time series modelling it is important to have generic tools to
handle them which offer enormous flexibility and can carry out the more routine aspects of the
computational problem. SsfPack provides fast hard coded general filtering, moment smoothing
and simulation smoothing routines. These can be tailored towards particular applications by
the users.

This version of the C library SsfPack is linked to the Ox matrix programming language of
Doornik (1996). Other implementations of SsfPack are due to follow. However, the SsfPack
header file includes four important C functions which can be called directly. Thus a part of the
dynamic link library of SsfPack can also be used in other programming environments such as
Gauss and Splus. SsfPack is free of charge and it can be used together with the free versions of
Ox. The files of SsfPack can be downloaded from the Internet or they can be mailed to you on
request.

1.1 Installation

General information about the package SsfPack 2.0 can be obtained from the website

http://center.kub.nl/stamp/ssfpack.htm

Also it enables the visitor to download ssfpack.zip which contains the files:

ssfpack.dll // the dynamic link library
ssfpack.h // the header file
ssfpack.ps // postscript file of documentation
read.me // installation notes
ssf*.ox // example ox programs from this documentation

When the internet is not available to you, please contact the first author who will be happy to
provide you with the SsfPack disk (send a letter or email s.j.koopman@kub.nl).

It is assumed that Ox 1.20a or higher is installed on your computer. If this is not the case,
we advise you to go to the website of Jurgen A Doornik:

http://www.nuff.ox.ac.uk/users/doornik/

Installation is simple: just follow the guidelines given by the read.me file.

1.2 Copyrights and references

Permission to use, copy, modify and distribute SsfPack, its documentation included, for any
non-commercial purpose and without fee is hereby granted, provided that the above copyright
notice appears in all copies and that copyright notice and this permission notice appears in
supported documentation and other output. Therefore, if you publish work for which you have
used SsfPack, we like you to refer to SsfPack as follows:

Koopman S.J., N. Shephard and J.A. Doornik (1998)
SsfPack 2.0: Statistical algorithms for models in state space.
http://center.kub.nl/stamp/ssfpack.htm.
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1.3 Overview of SsfPack functions

Models in state space form

GetSsfArma puts ARMA model in state space (section 3.1).
GetSsfReg puts regression model in state space (section 3.3).
GetSsfSpline puts nonparametric cubic spline model in state space (section 3.4).
GetSsfStsm puts unobserved components time series model in state space (section 3.2).

General state space algorithms

KalmanFil returns output of the Kalman filter (section 4.2).
KalmanSmo returns output of the basic smoothing algorithm (section 4.3).
SimSmoDraw returns a sample from the simulation smoother (section 4.4).
SimSmoWgt returns covariance output of the simulation smoother (section 4.4).

Ready-to-use functions

SsfLik returns log-likelihood function (section 5.1).
SsfLikConc returns profile log-likelihood function (section 5.1).
SsfLikSco returns score vector (section 5.1).
SsfRecursion returns output of the state space recursion (section 4.1).
SsfCondDens returns mean or a draw from the conditional density (section 5.3)
SsfMomentEst returns output from prediction, forecasting and smoothing (section 5.2).

2 State space form

The state space form provides a unified representation of a wide range of linear Gaussian time
series models including ARMA models, time-varying regression models, dynamic linear models
and unobserved components time series models. This framework also encapsulates different
specifications for nonparametric and spline regressions. The Gaussian state space form consists
of a transition equation and a measurement equation; we formulate it as

αt+1 = dt + Ttαt +Htεt, α1 ∼ N(a, P ) , t = 1, . . . , n, (1)
yt = ct + Ztαt +Gtεt, εt ∼ NID (0, I) , (2)

where NID (µ,Ψ) indicates a normally identical distributed variable with mean µ and variance
matrix Ψ and, similarly, N stands for a normally distributed variable. The state equation (1) has
a Markovian structure to describe the serial correlation of the time series yt. The measurement
equation (2) relates the N ×1 vector of observations yt in terms of the m×1 state vector αt and
the r×1 vector of disturbances εt, for t = 1, . . . , n. The deterministic matrices Tt, Zt, Ht and Gt
are referred to as system matrices and they are often sparse selection matrices. The vectors dt
and ct are fixed and known, for t = 1, . . . , n, and they are often zero. When the system matrices
are constant over time, we drop the time-indices to obtain the matrices T , Z, H and G. The
resulting state space form is referred to as time-invariant. The variance matrix P of the initial
state vector α1 may contain diffuse elements, that is

P = P∗ + κP∞, κ is large, (3)

where P∗ is a symmetric m×m matrix, P∞ is a diagonal m×m matrix composed of zero and
unity values and, for example, κ = 107. When the i-th diagonal element of P∞ is unity, the
corresponding i-th column and row of P∗ are assumed to be zero.
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The state space form in SsfPack is represented by,(
αt+1

yt

)
= δt + Φtαt + ut, ut ∼ NID (0,Ωt) , t = 1, . . . , n, (4)

with

δt =

(
dt
ct

)
, Φt =

(
Tt
Zt

)
, ut =

(
Ht

Gt

)
εt, Ωt =

(
HtH

′
t HtG

′
t

GtH
′
t GtG

′
t

)
, (5)

and α1 ∼ N (a, P ). Note that the vector δt is m + N × 1, the matrix Φt is m + N × m and
the matrix Ωt is m + N ×m + N . Specifying a model in state space form within SsfPack can
be done in different ways depending on its complexity. At the most elementary level, the state
space form is supposed to be time-invariant with δ = 0, a = 0 and P = κI so only two matrices
are required, that is

Φ =

(
T
Z

)
, Ω =

(
HH ′ HG′

GH ′ GG′

)
.

For example, consider the local linear trend model,

µt+1 = µt + βt + ηt, ηt ∼ NID (0, 2) ,
βt+1 = βt + ζt, ζt ∼ NID (0, 1) ,
yt = µt + ξt, ξt ∼ NID (0, 5) ,

(6)

with µ1 ∼ NID (0, κ) and β1 ∼ NID (0, κ) where κ is large; for more details about this model,
see section 4.2. The matrices Φ and Ω for this model are given by

Φ =

 1 1
0 1
1 0

 , Ω =

 2 0 0
0 1 0
0 0 5

 .
In Ox code, this model is inputted by

mPhi = <1,1;0,1;1,0>;
mOmega = diag(<2,1,5>);

The specification implies that αt = (µt, βt)
′.

2.1 Initial conditions

When the initial state conditions are not explicitly defined, it will be assumed that

a = 0, P∗ = 0, P∞ = I, (7)

such that the initial state vector is fully diffuse, that is α1 ∼ N(0, κI). To specify the initial
state conditions (3) explicitly, the m+ 1 ×m matrix

Σ =

(
P
a′

)
, (8)

is required. The block matrix P in Σ is equal to matrix P∗ except when a diagonal element of P
is equal to −1 indicating that the corresponding initial state vector element is diffuse. When a
diagonal element of P is −1, the corresponding row and column of P are not used. For example,
the initial state vector of the local linear trend model (6) is fully diffuse, so in Ox we have

mSigma = <-1,0;0,-1;0,0>;
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2.2 Time-varying state space form

When some elements of the system matrices are not constant but change over time, additional
administration is required. We introduce the index matrices JΦ, JΩ and Jδ which must have the
same dimension as Φ, Ω and δ, respectively. The elements of the index matrices are all set to
−1 except the elements for which the corresponding elements in Φ, Ω and δ are time varying.
The non-negative index value indicates the row of some data matrix which contain the time
varying values. Also, when no element of a system matrix is time-varying, the corresponding
index matrix can be set to the 1 × 1 zero matrix; in Ox, that is <0>. For example, the local
linear trend model (6) with time-varying variances (instead of being a set of constants) is defined
as

mJ_Phi = <0>;
mJ_Omega= <4,-1,-1;-1,0,-1;-1,-1,2>;
mJ_Delta = <0>;

for which the variances of ξt are found in the third row of an accompanying data matrix (note
that indexing starts at value 0 in Ox). The variances of ηt and ζt are to be found in the fifth
row and the first row, respectively, of the data matrix which must have at least five rows and
n columns. None of the elements of matrix Φ is time-varying, therefore we set JΦ and Jδ to a
zero matrix.

2.3 Formulating the state space

SsfPack allows for a full range of different state space forms: from a simple time-invariant model
to a complicated time-varying model. The algorithms of section 4 require knowledge of the state
space which can be given in different levels. The most elementary state space form only requires
the matrix specifications of Φ and Ω; in this case, it is assumed that δ = 0, a = 0 and P = κI
with κ = 107. The initial conditions can explicitly be given by defining an appropriate matrix
Σ. The implicit m+N × 1 vector δ can also be given when it is nonzero. A time-invariant state
space form can be inputted in three different levels, that is

mPhi, mOmega
mPhi, mOmega, mSigma
mPhi, mOmega, mSigma, mDelta

Other ways of inputting a time-invariant state space form is not possible for the algorithms of
section 4. A state space form with time-varying system elements can be given as discussed in
section 2.2. The fourth possible way of inputting a state space for the algorithms of section 4 is

mPhi, mOmega, mSigma, mDelta, mJ_Phi, mJ_Omega, mJ_Delta, mX

where mX is the data matrix with n columns as discussed in section 2.2. When mSigma, mDelta,
mJ Phi, mJ Omega or mJ Delta is not relevant for the state space form, it can be inputted as a
1×1 zero matrix, that is <0> in Ox. For the algorithms of sections 4 and 5, the input statement
of the state space form is indicated by

{Ssf}

which refers to one of the four input statements of above.
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2.4 Missing values

The algorithms of SsfPack can handle missing values. A missing value is only recognised within
the data matrix (y1, . . . , yn) and it must have the value −9999.99. It is assumed that the system
matrices are given and therefore no missing values are allowed within the matrices Φ, Ω, Σ
and δ or their time-varying counterparts. This implies that if the value −9999.99 is present
within these state space quantities, it will be taken as the numerical value −9999.99 and not as
a missing value.

3 Univariate linear Gaussian models

3.1 ARMA models

The autoregressive moving average model of order p and q, denoted by ARMA(p, q), is given by

yt = φ1yt−1 + . . . + φpyt−p + ξt + θ1ξt−1 + . . . + θqξt−q, ξt ∼ NID
(
0, σ2

)
. (9)

The lag polynomial of order p is defined as A (L) = 1 + A1L + . . . + ApL
p where L is the lag

operator such that Lryt = yt−r. The model (9) is stationary when the roots of the polynomial
φ(L) = 1− φ1L− . . .−φpL

p are within the unit circle and the model is non-invertible when the
roots of the polynomial θ(L) = 1 + θ1L+ . . . + θqL

q are within the unit circle. The parameter
space can be restricted to obtain a stationary non-invertible ARMA model by following the
arguments in Ansley and Kohn (1986). Any ARMA model can be written as a first order
vector autoregressive, VAR(1), model. Such a representation, which is not unique, is called a
companion form or Markov representation. The most commonly quoted companion form of the
ARMA model is yt = (1, 0, 0, ..., 0)αt and

αt+1 =


φ1 1 0 · · · 0
φ2 0 1 · · · 0
...

. . .
φm−1 0 0 · · · 1
φm 0 0 · · · 0

αt +


1
θ1
...

θm−2

θm−1

 ξt, ξt ∼ NID
(
0, σ2

)
, (10)

with m = max(p, q + 1). This can be compactly written as αt+1 = Tαt + hξt where the time-
invariant matrices T and h are given in (10). Multivariate or vector ARMA models can also be
written in companion VAR(1) form. In the case of a stationary ARMA model in state space form,
the unconditional distribution of the state vector is αt ∼ N(0, V ), where V = TV T ′ + σ2hh′.
There are different ways of numerically solving out for V . The most straightforward way is
to invert a matrix in order to solve the linear equations (I − T ⊗ T ) vec(V ) = σ2vec(hh′) for
V , where the m2 × 1 vector vec(V ) stacks the columns of V ; see, for example, Magnus and
Neudecker (1988, Theorem 2, p. 30).

SsfPack implementation The SsfPack routine GetSsfArma provides the appropriate sys-
tem matrices for any univariate ARMA model. The routine requires two vectors containing the
autoregressive parameters φ1, . . . , φp and the moving average parameters θ1, . . . , θq which must
be chosen in such a way that the implied ARMA model is stationary and non-invertible; SsfPack
does not verify this. The function call

GetSsfArma(mAr, mMa, StDev, &mPhi, &mOmega, &mSigma);

places the ARMA coefficients within the appropriate state elements and it solves the set of
linear equations for the variance matrix of the initial state vector. The matrices mAr and mMa,
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containing the autoregressive and the moving average parameters, respectively, should be either
row vectors or column vectors. The scalar value StDev represents σ in (10). The function returns
three pointers (addresses) to the matrices Φ, Ω and Σ.

Example The following example outputs the relevant state space matrices for the ARMA(2,1)
model yt = 0.6yt−1 + 0.2yt−1 + ξt − 0.2ξt−1 with ξt ∼ NID (0, 1).

Ox code of ssfarma.ox:

#include <oxstd.h>
#include "SsfPack.h"

main()
{
decl mPhi, mOmega, mSigma;

// ARMA(2,1) model with standard deviation 1
GetSsfArma(<0.6, 0.2>, <-0.2>, 1, &mPhi, &mOmega, &mSigma);
// note: AR(2) model -> GetSsfArma(<0.6,0.2>, <0>, 1, ...);
// note: MA(1) model -> GetSsfArma(<0>, <-0.2>, 1, ...);

// print state space
print("Phi", mPhi);
print("Omega", mOmega);
print("Sigma", mSigma);

}

Ox output:

Phi
0.60000 1.0000
0.20000 0.00000
1.0000 0.00000

Omega
1.0000 -0.20000 0.00000

-0.20000 0.040000 0.00000
0.00000 0.00000 0.00000

Sigma
1.5631 -0.015538

-0.015538 0.10252
0.00000 0.00000

3.2 Unobserved components time series models

The state space model also deals directly with unobserved components time series models used in
structural time series and dynamic linear models; see, for example, West and Harrison (1997),
Kitagawa and Gersch (1996) and Harvey (1989). Ideally such component models should be
constructed from subject matter considerations, tailored to the particular problem at hand.
However, in practice there are a group of commonly used components which are used extensively.
For example, a specific time series model may include the trend µt, the seasonal γt, the cycle ψt
and the irregular εt component which is given by

yt = µt + γt + ψt + ξt, where ξt ∼ NID
(
0, σ2

ξ

)
, t = 1, . . . , n. (11)
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Explanatory variables (i.e. regression and intervention effects) can be included in this model
straightforwardly.

The trend component µt is usually specified as

µt+1 = µt + βt + ηt, ηt ∼ NID
(
0, σ2

η

)
,

βt+1 = βt + ζt, ζt ∼ NID
(
0, σ2

ζ

)
,

(12)

with µ0 ∼ N (0, κ) and β0 ∼ N(0, κ) where κ is large. The model with trend and irregular is
easily placed into state space form; see also section 2. Sometimes σ2

η of (12) is set to zero, and
so we refer to µt as a smooth trend or an integrated random walk component. When σ2

η and σ2
ς

are both set to zero, we obtain a deterministic linear trend in which µt = µ0 + β0t.
The specification of the ‘dummy’ seasonal component γt is given by

S(L)γt = ωt, where ωt ∼ NID(0, σ2
ω) and S(L) = 1 + L+ ...+ Ls−1, (13)

with s equal to the number of seasons, for t = 1, . . . , n. When σ2
ω of (13) is set to zero, the

seasonal component is fixed. In this case, the seasonal effects sum to zero over the previous ‘year’;
this ensures that it cannot be confounded with the other components. The space representation
for s = 4 is given by γt

γt−1

γt−2

 =

 −1 −1 −1
1 0 0
0 1 0


 γt−1

γt−2

γt−3

+

 ωt
0
0

 ,
 γ1

γ0

γ−1

 ∼ N(0, κI3) .

The seasonal component also has other representations. The so-called trigonometric seasonal
γt is generated by

γt =
[s/2]∑
j=1

γ+
j,t, where

(
γ+
j,t+1

γ∗j,t+1

)
=

(
cos λj sinλj
− sinλj cos λj

)(
γ+
j,t

γ∗j,t

)
+

(
ω+
j,t

ω∗
j,t

)
, (14)

with λj = 2πj/s as the j-th seasonal frequency and(
ω+
j,t

ω∗
j,t

)
∼ NID

{(
0
0

)
, σ2
ωI2

}
, j = 1, . . . , [s/2].

Note that for s even [s/2] = s/2, while for s odd, [s/2] = (s − 1)/2. For s even, the process
γ∗j,t, with j = s/2, can be dropped. The state space representation is straightforward and the
initial conditions are γ+

j,1 ∼ N (0, κ) and γ∗j,1 ∼ N(0, κ), for j = 1, . . . , [s/2]. The dummy and
trigonometric specifications for γt have different dynamic properties; see Harvey (1989). For
example, the trigonometric seasonal process evolves more smoothly; it can be shown that the
sum of the seasonals over the past ‘year’ follows a MA(s−2) rather than white noise. The same
property holds for the Harrison and Stevens seasonal representation for which all s individual
seasonal effects collected in the vector γ×t follow a random walk, that is

γ×t+1 =


γ1

γ2
...
γs


t+1

= γ×t + ωt,

where ωt =


ω1

ω2
...
ωs


t

∼ NID
{

0, σ2
ω

(
sIs − isi

′
s

s− 1

)}
,
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and is is a s×1 vector of ones; see Harrison and Stevens (1976). The specific covariance structure
between the s disturbance terms enforces the seasonal effects to sum to zero over the previous
‘year’. Also, the covariances between the s seasonal disturbances are equal. The state space
form is set up such that it selects the appropriate seasonal effect from γ×t ; this implies a time-
varying state space framework. However, the state space representation can be modified to a
time-invariant form as follows. Let γt = (1, 0′)γ×t , then

γ×t+1 =

(
0 Is−1

1 0

)
γ×t + ωt, where ωt ∼ NID

(
0, σ2

ω
sIs−isi′s
s−1

)
,

and γ×1 ∼ N
(
0, κsIs−isi

′
s

s−1

)
.

(15)

The implications of the different seasonal specifications are discussed in more detail by Harvey,
Koopman, and Penzer (1998).

An interesting seasonal component related to the Harrison and Stevens seasonal is given by
γt = (1, 0′)γ×t with

γ×t+1 = ργ×t + ωt, where ωt ∼ NID
{
γ̄, σ2

ω

(
1 − ρ2

) sIs−isi′s
s−1

}
and γ×1 ∼ N

{
γ̄, σ2

ω
sIs−isi′s
s−1

}
.

This specification provides a stationary seasonal model around some average seasonal pattern
given by the unknown fixed s× 1 vector of means γ̄. It is possible to have both stationary and
nonstationary seasonal components in a single unobserved components model, but in that case
identification requirements stipulate that γ̄ have to be set to zero.

The cycle component ψt is specified as(
ψt+1

ψ∗
t+1

)
= ρ

(
cos λc sinλc
− sinλc cos λc

)(
ψt
ψ∗
t

)
+

(
χt
χ∗
t

)
, (16)

with (
χt
χ∗
t

)
∼ NID

{(
0
0

)
, σ2
ψ

(
1 − ρ2

)
I2

}
,

and for which 0 < ρ ≤ 1 is the ‘damping factor’, the frequency is λc = 2π/c and c is the ‘period’
of the cycle. The initial conditions are ψ0 ∼ N

(
0, σ2

ψ

)
and ψ∗

0 ∼ N
(
0, σ2

ψ

)
with cov (ψ0,ψ

∗
0) = 0.

The variance of χt and χ∗
t is given in terms of σ2

ψ and ρ so that when ρ→ 1 the cycle component
reduces to a deterministic (but stationary) sine-cosine wave; see Harvey and Streibel (1998).

SsfPack implementation The SsfPack routine GetSsfStsm provides the relevant sys-
tem matrices for any univariate structural time series model. The routine requires one matrix
containing the model information in the following form

mStsm =



CMP LEVEL ση 0 0
CMP SLOPE σζ 0 0
CMP SEAS ... σω s 0
CMP CYC 0 σψ λc ρ

...
...

...
...

CMP CYC 9 σψ λc ρ
CMP IRREG σξ 0 0


.

The input matrix may contain less number of rows than the above setup and the rows may
have a different sequential order. However, the state vector is organised in the sequence level,

11



slope, seasonal, cycle and irregular. The first column of mStsm is of string type and the other
columns contain real values. The seasonal component can be set as CMP SEAS DUMMY for the
seasonal dummy specification (13), CMP SEAS TRIG for the trigonometric specification (14) and
CMP SEAS HS for the Harrison and Stevens specification (15). The model may contain ten dif-
ferent cycle components. SsfPack will not verify whether the parameters of the different cycles
are the same. If the first column of mStsm contains a string which have been identified earlier
(from top to bottom), the corresponding component will not be considered in the state space
formulation. The function GetSsfStsm returns three pointers (addresses) to the matrices Φ, Ω
and Σ.

Example The following example outputs the relevant state space matrices for a basic
structural time series model with trend (including slope), dummy seasonal with s = 3 and
irregular.

Ox code of ssfstsm.ox:

#include <oxstd.h>
#include "SsfPack.h"

main()
{
decl mPhi, mOmega, mSigma;

// stuctural time series model
GetSsfStsm(
<CMP_IRREG, 1.0, 0, 0;
CMP_LEVEL, 0.5, 0, 0;
CMP_SEAS_DUMMY, 0.2, 3, 0;
CMP_SLOPE, 0.1, 0, 0>, &mPhi, &mOmega, &mSigma);

// print state space
print("Phi", mPhi);
print("Omega", mOmega);
print("Sigma", mSigma);

}

Ox output:

Phi
1.0000 1.0000 0.00000 0.00000

0.00000 1.0000 0.00000 0.00000
0.00000 0.00000 -1.0000 -1.0000
0.00000 0.00000 1.0000 0.00000
1.0000 0.00000 1.0000 0.00000

Omega
0.25000 0.00000 0.00000 0.00000 0.00000
0.00000 0.010000 0.00000 0.00000 0.00000
0.00000 0.00000 0.040000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 1.0000

Sigma
-1.0000 0.00000 0.00000 0.00000
0.00000 -1.0000 0.00000 0.00000
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0.00000 0.00000 -1.0000 0.00000
0.00000 0.00000 0.00000 -1.0000
0.00000 0.00000 0.00000 0.00000

3.3 Regression models

The regression model can also be represented as a state space model. The Kalman filter for the
regression model in state space form is equivalent to the ‘recursive least squares’ algorithm for
the standard regression model; see Harvey (1993, section 4.5). The univariate multiple regression
model yt = Xtβ+ξt with ξt ∼ NID

(
0, σ2I

)
and the k×1 vector of coefficients β, for t = 1, . . . , n,

is in state space given by

αt+1 = αt, yt = Xtαt +Gtεt, t = 1, . . . , n,

so that the system matrices are set to Tt = I, Zt = Xt, Gt = σI and Ht = 0. The vector
of coefficients β is fixed and unknown so that the initial conditions are α1 ∼ N(0, κI) where
κ is large. The regression model enforces a time-varying state space due to the measurement
equation. Time-varying regression coefficients may be introduced by setting Ht such thatHt 6= 0,
for t = 1, . . . , n.

SsfPack implementation The SsfPack routine GetSsfReg provides the time-varying state
space structure for a univariate (single equation) regression model. The function call is

GetSsfReg(mX, &mPhi, &mOmega, &mSigma, &mJ_Phi);

where (k × n) matrix mX is a data matrix containing the explanatory variables. The function
returns three pointers (addresses) to the composite matrices Φ, Ω and Σ and to the index matrix
JΦ; see section 2. The index matrix JΦ refers to the inputted data matrix mX. The structure of
the output matrices is clearified in the example below

Example The following example outputs the relevant state space matrices for a standard
regression model with three explanatory variables.

Ox code of ssfreg.ox:

#include <oxstd.h>
#include "SsfPack.h"

main()
{
decl mX, mPhi, mOmega, mSigma, mJ_Phi;
mX = rann(3,20);
// regression model in state space
GetSsfReg(mX, &mPhi, &mOmega, &mSigma, &mJ_Phi);

// print state space
print("Phi", mPhi);
print("Time-varying index for Phi", mJ_Phi);
print("Omega", mOmega);
print("Sigma", mSigma);

}

Ox output:
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Phi
1.0000 0.00000 0.00000

0.00000 1.0000 0.00000
0.00000 0.00000 1.0000
0.00000 0.00000 0.00000

Time-varying index for Phi
-1 -1 -1
-1 -1 -1
-1 -1 -1
0 1 2

Omega
0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 1.0000

Sigma
-1.0000 0.00000 0.00000
0.00000 -1.0000 0.00000
0.00000 0.00000 -1.0000
0.00000 0.00000 0.00000

3.4 Nonparametric cubic spline models

Suppose we work with a continuous variable t for which associated vector observations x (t)
are made at points τ1, ..., τn; see the work by Bergstrom (1984). Define δt = τt − τt−1 as the
gap between observations. A possible representation for such observations is the zero mean
multivariate Ornstein-Uhlenbeck process

dx(t) = φx (t) dt+RdW (t) , (17)

where W (t) is Brownian motion and so dW (t) is normally distributed with N (0,Λ).
Let us now focus on using smoothing spline techniques for estimating a signal µ(t) from

univariate observations y (t) via the relationship

y(t) = µ(t) + ψ(t),

where ψ (t) is a stationary error process. The task at hand is to find a curve which minimizes∑n
i=1 {y(τt) − µ(τi)}2 subject to the function µ(t) being ‘smooth’. The common approach is to

select the fitted µ̂(t) by minimising the penalised likelihood, that is

n∑
i=1

{y (τi) − µ (τt)}2 + q

∫ {
∂2µ (t)
∂t2

}2

dt, (18)

for a given value of q; see Kohn and Ansley (1987), Hastie and Tibshirani (1990) and Green and
Silverman (1994).

The so-called cubic spline model puts dµ (t) = β (t) dt, where dβ (t) = dζ (t) and ζ (t) is
Brownian motion with variance of σ2

ζ t. Thus d2µ (t) = dζ (t) dt, and so the log density of this
process is, ignoring constants,

− 1
2σ2

ζ

∫ {
dζ (t)
dt

}2

dt = − 1
2σ2

ζ

∫ {
∂2µ (t)
∂t2

}2

dt.
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It can be shown that the penalty function in (18) is the same as the log density from a continuous
time Gaussian smooth trend model of the form (17) where

R = I, φ =

(
0 1
0 0

)
, Λ =

(
0 1
0 σ2

ζ t

)
.

Taking the continuous time process µ (t) at discrete intervals, leads us to the following exact
discrete time model for µ (τt+1) when δt = τt+1 − τt

µ (τt+1) = µ (τt) + δtβ (τt) + η (τt) ,
β (τt+1) = β (τt) + ζ (τt) ,

(19)

where (
η (τt)
ζ (τt)

)
∼ NID

{(
0
0

)
, σ2
ζδt

(
1
3δ

2
t

1
2δt

1
2δt 1

)}
.

This can be combined with the more straightforward measurement y (τt) = µ (τt)+ε (τt) , where
ε (τt) ∼ NID

(
0, σ2

ε

)
, to give the model which has a joint density which is the same as the

penalized likelihood (18) with signal-to-noise ratio q = σ2
ζ/σ

2
ε . Hence the usual state space

framework with

Φt =

 1 δt
0 1
1 0

 , Ωt =

 qδ3t /3 qδ2t /2 0
qδ2t /2 qδt 0

0 0 1

 ,
can be used for filtering, smoothing and prediction.

SsfPack implementation The SsfPack routine GetSsfSpline provides the time-varying
state space structure for the cubic spline model (19). The function call is

GetSsfSpline(dq, mDelta, &mPhi, &mOmega, &mJ_Phi, &mJ_Omega, &mX);

where dq is the signal-to-noise ratio q and mDelta is the 1×n data matrix with δt (t = 1, . . . , n).
The routine returns the state space matrices Φ and Ω together with

mJ Phi =

 −1 0
−1 −1
−1 −1

 , mJ Omega =

 3 2 −1
2 1 −1
−1 −1 −1

 , mX =


δ1 . . . δn
qδ1 . . . qδn
qδ21/2 . . . qδ2n/2
qδ31/3 . . . qδ3n/3

 .

Example The following example outputs the relevant state space matrices for the non-
parametric cubic spline model with q = 0.2.

Ox code of ssfspl.ox:

#include <oxstd.h>
#include "SsfPack.h"

main()
{
decl mDelta, mPhi, mOmega, mJ_Phi, mJ_Omega, mX;

// cubic spline model with q = 0.2
mDelta = <1,2,4,3,5,3,3,2>;
GetSsfSpline(0.2, mDelta, &mPhi, &mOmega, &mJ_Phi, &mJ_Omega, &mX);
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// print state space
print("Phi", mPhi);
print("Time-varying index for Phi", mJ_Phi);
print("Omega", mOmega);
print("Time-varying index for Omega", mJ_Omega);
print("Data matrix", mX’);

}

Ox output:

Phi
1.0000 0.00000

0.00000 1.0000
1.0000 0.00000

Time-varying index for Phi
-1 0
-1 -1
-1 -1

Omega
0.00000 0.00000 0.00000
0.00000 0.00000 0.00000
0.00000 0.00000 1.0000

Time-varying index for Omega
3 2 -1
2 1 -1

-1 -1 -1
Data matrix

1.0000 0.20000 0.10000 0.066667
2.0000 0.40000 0.40000 0.53333
4.0000 0.80000 1.6000 4.2667
3.0000 0.60000 0.90000 1.8000
5.0000 1.0000 2.5000 8.3333
3.0000 0.60000 0.90000 1.8000
3.0000 0.60000 0.90000 1.8000
2.0000 0.40000 0.40000 0.53333

4 Review of algorithms: the basic functions

4.1 State space recursion

To generate samples from the unconditional distribution implied by a statistical model in state
space form or to generate artificial data sets, we use the state space form (4) as a recursive set
of equations. For a given set of errors (H ′

t, G
′
t)
′ εt = ut = u

(·)
t (t = 1, . . . , n), actual values for

α
(i)
t+1 and y(i)

t are recursively calculated by(
α

(·)
t+1

y
(·)
t

)
= δt + Φtα

(·)
t + u

(·)
t , t = 1, . . . , n, (20)

with the initialization α
(·)
1 = a + Pu

(·)
0 where vectors a and u

(·)
0 and matrix P are given. The

quantities a and P must be placed in Σ as given by (8); see section 2.1. Note that the role of P
for the initial state vector α(·)

1 is different compared to the initialisation of (4).
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SsfPack implementation The SsfPack function SsfRecursion calls the recursion (20)
for a given sample of u(·)

t (t = 0, . . . , n). The recursion is called by:

mD = SsfRecursion(mR, {Ssf});

where mR is the m+N × n+ 1 data matrix with structure

mR =
(
u

(·)
0 u

(·)
1 . . . u

(·)
n

)
.

The value −9999.99 is not recognised as a missing value within mR. The input sequence {Ssf} is
discussed in section 2.3. The matrix Ω does not play a role in this routine but to be consistent
with other SsfPack routines, it must be inputted as an argument anyway. The matrix Σ may
play a slightly different role compared to other SsfPack routines. The function SsfRecursion
returns the m+N × n+ 1 data matrix

mD =

(
α

(·)
1 α

(·)
2 . . . α

(·)
n+1

0 y
(·)
1 y

(·)
n

)
.

Example The following Ox program generates artificial data from the local linear trend
model (6) with σ2

η = 0, σ2
ζ = 0.1 and σ2

ξ = 1. The Ox function rann produces a matrix of
standard normal random deviates. The initial state vector α1 = (µ1, β1)

′ is set equal to (5, 2)′.
Ox code of ssfrec.ox:

#include <oxstd.h>
#include "ssfpack.h"
main()
{
decl mPhi, mOmega, mSigma, mR, mD;
mPhi = <1,1;0,1;1,0>;
mOmega = diag(<0,0.1,1>);
mSigma = <0,0;0,0;5,2>;

mR = sqrt(mOmega) * rann(3, 8);
mD = SsfRecursion(mR, mPhi, mOmega, mSigma);

print("Errors", mR’);
print("Monte Carlo simulation", mD’);

}

Ox output:

Errors
0.00000 0.18097 -0.34213
0.00000 -0.065792 0.53748
0.00000 -0.18757 -0.89710
0.00000 0.11576 0.65835
0.00000 0.34257 0.20503
0.00000 0.47684 1.5993
0.00000 -0.15472 0.31418
0.00000 -0.35452 -0.77329

Monte Carlo simulation
5.0000 2.0000 0.00000
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7.0000 1.9342 5.5375
8.9342 1.7466 6.1029
10.681 1.8624 9.5926
12.543 2.2050 10.886
14.748 2.6818 14.143
17.430 2.5271 15.062
19.957 2.1726 16.657

4.2 Kalman filter

The Kalman filter is a recursive algorithm for the evaluation of moments of the normal distri-
bution of state vector αt+1 conditional on the data set Yt = {y1, . . . , yt}, that is

at+1|t = E(αt+1|Yt) , Pt+1|t = cov (αt+1|Yt) ,

for t = 1, . . . , n; see Anderson and Moore (1979, page 36) and Harvey (1989, page 104). The
Kalman filter is given by

vt = yt − ct − Ztat|t−1,

Ft = ZtPtZ
′
t +GtG

′
t,

Kt =
(
TtPtZ

′
t +HtG

′
t

)
F−1
t , (21)

at+1 = dt + Ttat +Ktvt,

Pt+1 = TtPtT
′
t +HtH

′
t −KtFtK

′
t, t = 1, . . . , n,

where a1 = a and P1 = P∗ + κP∞ with κ = 107.
The SsfPack computer program for the Kalman filter is written in a computationally efficient

way. The steps are given by

(i) Set t = 1, a1 = a and P1 = P∗ + 107P∞.

(ii) Calculate:(
āt+1

ŷt

)
= δt + Φtat,

(
P̄t+1 Mt

M ′
t Ft

)
= ΦtPtΦ′

t + Ωt, Kt = MtF
−1
t ,

where δt, Φt and Ωt are defined in (5).

(iii) Update:
vt = yt − ŷt, at+1 = āt+1 +Ktvt, Pt+1 = P̄t+1 −KtM

′
t.

(iv) Set t = t+ 1 and goto (ii) until t = n.

The program stops with an error message when |Ft| ≤ 0 or when no computer memory is
available.

SsfPack implementation The SsfPack function KalmanFil calls the Kalman filter and
returns the output vt, Ft and Kt (t = 1, . . . , n) as a data matrix. The Kalman filter function
call is

mKF = KalmanFil(mY, {Ssf});
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where mY is a N × n data matrix. The input sequence {Ssf} is discussed in section 2.3. In the
simplest time-invariant case, {Ssf} is replaced by

mPhi, mOmega

see the example below. The Kalman filter is available for univariate and multivariate state space
models but the call is the same. The row dimension of data matrix mY determines whether the
univariate or the multivariate Kalman filter is used. The function returns the data matrix mKF
with dimension k × T where

k = N

(
1 +m+

N + 1
2

)
.

For univariate models in state space form, the returned storage matrix is simply the m+ 2 × n
matrix

mKF =

 v1 . . . vn
K1 . . . Kn

F−1
1 . . . F−1

n

 .
In multivariate cases, the returned data matrix is organized as

mKF =



v1 . . . vT
(K1)∗1 . . . (KT )∗1(
F−1

1

)
11

. . .
(
F−1
T

)
11

(K1)∗2 . . . (KT )∗2(
F−1

1

)
12

. . .
(
F−1
T

)
12(

F−1
1

)
22

. . .
(
F−1
T

)
22

...
...

(K1)∗N . . . (KT )∗N(
F−1

1

)
∗N

(
F−1
T

)
∗N



,

where M∗i refers to the i-th column of matrix M and the element Mij refers to the (i, j) element
of matrix M . The storage of the inverse matrix F−1

t is limited to its upper triangular part.

Example The following Ox program applies the Kalman filter to the local linear trend
model (6) with σ2

η = 0, σ2
ζ = 0.1 and σ2

ξ = 1.
Ox code of ssfkf.ox:

#include <oxstd.h>
#include "ssfpack.h"
main()
{
decl mY, mPhi, mOmega, mKF;
mY = <1,9,2,5,8,4,6,7,3>;
mPhi = <1,1;0,1;1,0>;
mOmega = diag(<0.0,0.1,1>);
mKF = KalmanFil(mY, mPhi, mOmega);
print("Kalman filter output", mKF’);

}

Ox output:
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Kalman filter output
1.0000 0.99999 0.00000 9.9999e-006
8.0000 2.0000 0.99998 9.9998e-006

-15.000 1.3443 0.50819 0.16394
0.16392 1.0382 0.32579 0.28760
2.6167 0.88282 0.25053 0.36771

-4.1238 0.80786 0.22140 0.41353
0.12163 0.77684 0.21246 0.43562
0.85411 0.76694 0.21099 0.44405
-3.9998 0.76497 0.21132 0.44635

4.3 Moment smoothing

The Kalman filter is a forwards recursion which evaluates one-step ahead estimators. The
associated moment smoothing algorithm is a backwards recursion which evaluates the mean
and variance of specific conditional distributions given the data set Yn = {y1, . . . , yn} using the
output of the Kalman filter; see Anderson and Moore (1979), Kohn and Ansley (1989), de Jong
(1988b), de Jong (1989) and Koopman (1993). The backwards recursions are given by

et = F−1
t vt −K ′

trt,

Dt = F−1
t +K ′

tNtKt, (22)
rt−1 = Z ′

tF
−1
t vt + L′

trt,

Nt−1 = Z ′
tF

−1
t Zt + L′

tNtLt, t = n, . . . , 1,

with Lt = Tt −KtZt and with the initialisations rn = 0 and Nn = 0.

4.3.1 Disturbance smoothing

The moment smoother (22) generates quantities from which different kinds of estimators can be
obtained. For example, it can be shown that the mean and variance of the conditional density
f (εt|Yn) is given by, respectively,

E (εt|Yn) = G′
tet +H ′

trt,

var (εt|Yn) = G′
t

(
DtGt −K ′

tNtHt

)
+H ′

t (NtHt −NtKtGt) ,

and expressions for E (ut|Yn) and var (ut|Yn), where ut is defined in (4), follow directly from this.
It is also clear that, when HtG

′
t = 0,

E (Gtεt|Yn) = GtG
′
tet,

var (Gtεt|Yn) = GtG
′
tDtGtG

′
t,

E (Htεt|Yn) = HtH
′
trt,

var (Htεt|Yn) = HtH
′
tNtHtH

′
t,

for t = 1, . . . , n; see Koopman (1993) for more general results.
The SsfPack computer program for the moment smoother is written in a similar way as the

Kalman filter. The steps are given by

(i) Set t = n, rn = 0 and Nn = 0.

(ii) Calculate:

r̄t =

(
rt
et = F−1

t vt −K ′
trt

)
, N̄t =

(
Nt −NtKt

−K ′
tNt Dt = F−1

t +K ′
tNtKt

)
.
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(iii) Update:
rt−1 = Φ′

tr̄t, Nt−1 = Φ′
tN̄tΦt.

where Φt is defined in (5).

(iv) Set t = t− 1 and goto (ii) until t = 1.

The program stops with an error message when no computer memory is available. The vector
δt and the matrix Ωt do not play a role in the basic smoothing recursions. Finally, it should be
noted that the smoothed estimator ût = E(ut|Yn), where ut is from (4), is simply obtained by
Ωtr̄t and the corresponding variance matrix is var (ut|Yn) = ΩtN̄tΩt; see section 5.2.5 for further
details.

4.3.2 Quick state smoothing

The generated output from the basic smoothing recursions can also be used to obtain α̂t =
E(αt|Yn), that is the smoothed estimator of the state vector, using the recursion

α̂t+1 = dt + Ttα̂t +Htε̂t, t = 1, . . . , n,

with α̂1 = a+Pr0 and ε̂t = E(εt|Yn) = G′
tet+H

′
trt; see Koopman (1993) for details. This simple

recursion is similar to the state space recursion (20). A further discussion on state smoothing is
found in sections 5.2.3 and 5.3.1. This method of state smoothing is illustrated in the example
below using the SsfPack function SsfRecursion.

SsfPack implementation The SsfPack function KalmanSmo calls the moment smoother
and stores the output et, Dt, rt−1 and Nt−1 for t = 1, . . . , n, into a data matrix. The Kalman
smoother algorithm is called by

mKS = KalmanSmo(mKF, {Ssf});

where the sequence {Ssf} is discussed in section 2.3. Matrix mKF is the data matrix which
is produced by the function KalmanFil using the same state space form as implied by {Ssf}.
Matrix mKS is a data matrix of dimension k × n+ 1, with

k = 2 (m+N) ,

and the structure of the matrix is

mKS =


r0 r1 . . . rn
0 e1 . . . en

diag (N0) diag (N1) . . . diag (Nn)
0 diag (D1) . . . diag (Dn)

 ,
where diag (A) vectorizes the diagonal elements of the square matrix A. The output matrix is
organised in this way partly because the first two blocks of rows of mKS can be used as the input
matrix mR of the SsfPack function SsfRecursion; see section 4.1. More elaborate and more
‘easy-to-use’ functions for moment smoothing of the disturbance and state vector are given in
section 5.3.
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Example The following Ox program applies the Kalman filter smoother to the local linear
trend model (6) with σ2

η = 0, σ2
ζ = 0.1 and σ2

ξ = 1. It outputs the matrix mKS and it also outputs
the smoothed disturbances and states.

Ox code of ssfsmo.ox:

#include <oxstd.h>
#include "ssfpack.h"
main()
{
decl mY, mPhi, mOmega, mKF, mKS;
mY = <1,9,2,5,8,4,6,7,3>;
mPhi = <1,1;0,1;1,0>;
mOmega = diag(<0.0,0.1,1>);
mKF = KalmanFil(mY, mPhi, mOmega);
mKS = KalmanSmo(mKF, mPhi, mOmega);
print("Basic smoother output", mKS’);

mKS[0:2][1:9] = mOmega * mKS[0:2][1:9];
print("Smoothed disturbances", mKS[0:2][1:9]’);

mKS = SsfRecursion(mKS[0:2][], mPhi, mOmega);
print("Smoothed states", mKS’);

}

Ox output:

Basic smoother output
3.6106e-005 7.6158e-006 0.00000 9.9999e-006 1.0000e-005 0.00000

2.6107 -2.6107 -2.6106 0.44636 0.44636 0.44636
-2.0171 -0.59351 4.6278 0.46830 1.1227 0.70660
0.85557 -1.4491 -2.8727 0.46923 1.6135 0.77271
1.1694 -2.6185 -0.31387 0.48497 1.7810 0.77866

-1.2204 -1.3981 2.3899 0.48497 1.6135 0.77675
0.42407 -1.8221 -1.6445 0.46923 1.1227 0.77866

-0.036817 -1.7853 0.46089 0.46830 0.44635 0.77271
-1.7853 0.00000 1.7485 0.44635 0.00000 0.70660
0.00000 0.00000 -1.7853 0.00000 0.00000 0.44635

Smoothed disturbances
0.00000 -0.26107 -2.6106
0.00000 -0.059351 4.6278
0.00000 -0.14491 -2.8727
0.00000 -0.26185 -0.31387
0.00000 -0.13981 2.3899
0.00000 -0.18221 -1.6445
0.00000 -0.17853 0.46089
0.00000 0.00000 1.7485
0.00000 0.00000 -1.7853

Smoothed states
3.6106 0.76158 0.00000
4.3722 0.50051 1.0000
4.8727 0.44116 9.0000
5.3139 0.29625 2.0000
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5.6101 0.034399 5.0000
5.6445 -0.10541 8.0000
5.5391 -0.28762 4.0000
5.2515 -0.46616 6.0000
4.7853 -0.46616 7.0000
4.3192 -0.46616 3.0000

4.4 Simulation smoother

4.4.1 Disturbance simulation smoothing

The simulation smoother is developed by de Jong and Shephard (1995) and it allows drawing
random numbers from the multivariate conditional Gaussian density of

ũ =
(
ũ′1, ..., ũ

′
n

)′
, where ũ ∼ Γu|Yn, t = 1, . . . , n, (23)

with u = (u′1, ..., u′n)
′ and ut as defined in (5). The m + N ×m +N diagonal selection matrix

Γ consists of unity and zero values on the diagonal. It is introduced to avoid degeneracies in
sampling and to be able to select samples which are required (computational efficiency). For
example, when we consider the local linear trend model (6) and we wish to generate samples
from the multivariate conditional density of the disturbance ζt (t = 1, . . . , n), then matrix
Γ = diag

(
0 1 0

)
. When we wish to generate samples from the multivariate joint conditional

density of ηt and ζt (t = 1, . . . , n) for model (6), matrix Γ is given by

Γ = diag
(

1 1 0
)
.

Finally, generating conditional samples for Gtεt of the state space form, which for univariate
cases requires

Γ = diag
(

0 . . . 0 1
)
,

also implicitly produces samples from f (θt|Yn), with signal θt = ct + Ztαt, since yt −Gtεt = θt
(t = 1, . . . , n). The simulation algorithms use the s×m+N zero-unity matrix Γ∗ which is the
same as Γ but where the zero rows are deleted from Γ. For example,

Γ = diag
(

1 0 1
)

becomes Γ∗ =

(
1 0 0
0 0 1

)
and Γ∗′Γ∗ = Γ,

with s = 2.
The simulation smoother is a backwards recursion and requires the output of the Kalman

filter. The equations are given by

Ct = Γ∗
(
Ht

Gt

)(
I −G′

tF
−1
t Gt − J ′

tNtJt
)( Ht

Gt

)′
Γ∗′,

Wt = Γ∗
(
Ht

Gt

)(
G′
tF

−1
t Zt + J ′

tNtLt
)
, ξt ∼ N(0, Ct), (24)

rt−1 = Z ′
tF

−1
t vt −W ′

tC
−1
t ξt + L′

trt,

Nt−1 = Z ′
tF

−1
t Zt +W ′

tC
−1
t Wt + L′

tNtLt, t = n, . . . , 1,

where Lt = Tt − KtZt and Jt = Ht − KtGt. The initialization is rn = 0 and Nn = 0. The
notation for rt and Nt is the same as for the moment smoother (22) since the nature of both
recursions is very similar. However, their actual values are different. It can be shown that

ũt = Γ∗′
{

Γ∗
(
Ht

Gt

)(
G′
tF

−1
t vt + J ′

trt
)

+ ξt

}
,
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is a draw as indicated by (23). The selection matrix Γ must be chosen so that Γ∗ΩtΓ∗′ is
nonsingular and r (Γ∗ΩtΓ∗′) ≤ m; the latter condition is required to avoid degenerate sampling
and matrix Ct being singular. These conditions are not sufficient to avoid degenerate sampling;
see de Jong and Shephard (1995). However, the conditions firmly exclude the special case of
Γ = Im+N .

The structure of the SsfPack computer program for the simulation smoother is similar to

the moment smoother. In the following we introduce the matrix At = C
− 1

2
t Wt. The steps of the

program are given by

(i) Set t = n, rn = 0 and Nn = 0.

(ii) Calculate:

r̄t =

(
rt
et = F−1

t vt −K ′
trt

)
, N̄t =

(
Nt −NtKt

−K ′
tNt Dt = F−1

t +K ′
tNtKt

)
.

(iii) Calculate:
Ct = Γ∗ (Ωt − ΩtN̄tΩt

)
Γ∗′,

apply a Choleski decomposition to Ct such that

Ct = BtB
′
t.

and solve recursively:
BtAt = Γ∗ΩtN̄t,

with respect to At. The matrices Φt and Ωt are defined in (5).

(iv) Update:
rt−1 = Φ′

t

(
r̄t −A′

tπt
)
, Nt−1 = Φ′

t

(
N̄t +A′

tAt
)
Φt.

with πt ∼ N(0, Is) .

(v) Set t = t− 1 and goto (ii) until t = 1.

The program stops with an error message when the Choleski decomposition for Ct fails or when
no computer memory is available. The vector δt does not play a role in simulation smoothing.

A draw from the Gaussian density for (23) is obtained by

ũt = Γ∗′ (Γ∗Ωtr̄t +Btπt) , t = 1, . . . , n.

When M different samples are required from the same model and conditional on the same
data-set Yn, the simulation smoother can be simplified to generate such multiple draws. In
such circumstances, the matrices At and Bt (the so-called weights) should be stored so that
repeatedly samples (i = 1, . . . ,M) can be generated via the recursion

rt−1 = Φ′
t

(
r̄t −A′

tπ
(i)
t

)
, π

(i)
t ∼ N(0, I) ,

ũ
(i)
t = Γ∗′

(
Γ∗Ωtr̄t +Btπ

(i)
t

)
, t = n, . . . , 1,

(25)

which is computationally very efficient. Note that r̄t = (r′t, e′t)
′; see step (ii) of the algorithm.

When s = 1, the storage of At and Bt (t = 1, . . . , n) requires a matrix of dimension 1+p+N×n.
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4.4.2 State simulation smoothing

It is mentioned earlier that generated samples from the simulation smoother (24) can be used
to get simulation samples from the multivariate density f (θ|Yn), where θ = (θ′1, . . . , θ′n)

′ and
θt = ct +Ztαt, by setting Γ such that Γ∗ (H ′

t, G
′
t)
′ = G∗

t , for t = 1, . . . , n, and where G∗
t is equal

to Gt but without the zero rows (in the same spirit of Γ and Γ∗). This follows from the identity
θt = yt − Gtεt. In a similar way, it is also possible to obtain samples from the multivariate
density f (α|Yn), where α = (α′

1, . . . , α
′
n)

′, by applying the simulation smoother (24) with Γ
such that Γ∗ (H ′

t, G
′
t)
′ = H∗

t , for t = 1, . . . , n, and where H∗
t is Ht but without the zero rows.

Then the generated sample ũt (t = 1, . . . , n) is inputted into the state space recursion (20)
with initialisation α

(·)
1 = a + Pr

(·)
0 ; see de Jong and Shephard (1995) for details. In this way

a sample from f (θ|Yn) can also be obtained but now via the identity θ
(·)
t = ct + Ztα

(·)
t (rather

than θ(·)
t = yt−{Gtεt}(·)) so that this sample is consistent with the sample from f (α|Yn). Note

that sampling directly from f (α, θ|Yn) is not possible because of degeneracies; this matter is
further discussed in section 5.4. A simple illustration is given by the example below.

SsfPack implementation The SsfPack function SimSmoWgt calls the simulation smoother,
but only with respect to the quantities Ct, Wt and Nt, and it stores the output At = B−1

t Wt

and Bt (note that Ct = BtB
′
t ), for t = 1, . . . , n, into a data matrix. The call is given by

mWgt = SimSmoWgt(mGamma, mKF, {Ssf});

where matrix mGamma is the m + N diagonal ‘selection’ matrix Γ and matrix mKF is the data
matrix which is produced by the function KalmanFil for the same state space form implied by
{Ssf}; see section 2.3. The output matrix mWgt is a data matrix of dimension k × n where

k = s

(
m+N +

s+ 1
2

)
,

and the structure of the matrix is

mWgt =

(
vec (A1) . . . vec (An)
vech (B1) . . . vech (Bn)

)

where vec (A) vectorizes matrix A and vech (A) vectorizes the lower triangular part (including
its diagonal) of matrix A.

The SsfPack function SimSmoDraw generates a sample from the distribution (23) which is
calculated by the equations (25). This function requires the weight matrices At and Bt (t =
1, . . . , n). The function call is given by

mD = SimSmoDraw(mGamma, mPi, mWgt, mKF, {Ssf});

Matrix mGamma is the diagonal ‘selection’ matrix Γ, matrix mPi is a s×n data matrix containing
the random deviates from the standard normal distribution, matrix mWgt is the data matrix
obtained from function SimSmoWgt, matrix mKF is the data matrix returned by the function
KalmanFil. The SimSmoDraw function returns the m+N × n+ 1 data matrix mD where

mD =
(
r̄
(·)
0 ũ1 . . . ũn

)
.

where r̄(·)0 =
(
r
(·)′
0 , 0′

)′
and ũt is defined in (23). Repeated samples can be generated consecut-

ively; see example below. The output matrix mD is constructed such that it can be used as the
input matrix mR for the SsfPack function SsfRecursion which enables state simulation samples;
see next Ox example.
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Example The following Ox program draws two samples from the multivariate conditional
Gaussian density f (ζ|Yn), with ζ = (ζ1, . . . , ζn)′, of the local linear trend model (6) with σ2

η = 0,
σ2
ζ = 0.1 and σ2

ε = 1. This draw is also used to generate samples from the densities f (α|Yn) and
f (θ|Yn). Note that Γ is selected such that Γ∗ (H ′, G′)′ = H but without the zero rows. Thus
Γ = diag (0, 1, 0) because σ2

η = 0.
Ox code of ssfsim.ox:

#include <oxstd.h>
#include "ssfpack.h"
main()
{
decl mY, mPhi, mOmega, mKF, mGamma, mWgt, mD;
mY = <1,9,2,5,8,4,6,7,3>;
mPhi = <1,1;0,1;1,0>;
mOmega = diag(<0,0.1,1>);
mKF = KalmanFil(mY, mPhi, mOmega);

mGamma = diag(<0,1,0>);
mWgt = SimSmoWgt(mGamma, mKF, mPhi, mOmega);
print("Simulation smoother weights", mWgt’);

mD = SimSmoDraw(mGamma, rann(1, 9), mWgt, mKF, mPhi, mOmega);
print("Draw 1 for slope disturbances", mD’);
mD = SsfRecursion(mD, mPhi, mOmega);
print("Draw 1 for state and signal", mD’);

mD = SimSmoDraw(mGamma, rann(1, 9), mWgt, mKF, mPhi, mOmega);
print("Draw 2 for slope disturbances", mD’);
mD = SsfRecursion(mD, mPhi, mOmega);
print("Draw 2 for state and signal", mD’);

}

Ox output:

Simulation smoother weights
-0.19091 0.19092 0.19091 0.30683
-0.29644 0.55114 0.041741 0.28987
-0.25945 0.78649 -0.050924 0.27934
-0.16301 0.78553 -0.086685 0.27938

-0.069415 0.62468 -0.095221 0.28653
0.0022409 0.38815 -0.087744 0.29742
0.033656 0.14441 -0.056826 0.30909
0.00000 0.00000 0.00000 0.31623
0.00000 0.00000 0.00000 0.31623

Draw 1 for slope disturbances
3.4129e-005 9.4503e-006 0.00000

0.00000 -0.45379 0.00000
0.00000 0.12184 0.00000
0.00000 -0.21032 0.00000
0.00000 -0.44214 0.00000
0.00000 -0.37313 0.00000
0.00000 0.022659 0.00000
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0.00000 0.15776 0.00000
0.00000 0.31542 0.00000
0.00000 0.18097 0.00000

Draw 1 for state and signal
3.4129 0.94503 0.00000
4.3579 0.49124 3.4129
4.8491 0.61307 4.3579
5.4622 0.40276 4.8491
5.8650 -0.039384 5.4622
5.8256 -0.41252 5.8650
5.4131 -0.38986 5.8256
5.0232 -0.23210 5.4131
4.7911 0.083326 5.0232
4.8744 0.26430 4.7911

Draw 2 for slope disturbances
3.7420e-005 8.1724e-006 0.00000

0.00000 -0.34201 0.00000
0.00000 -0.31491 0.00000
0.00000 -0.15183 0.00000
0.00000 -0.015562 0.00000
0.00000 0.32872 0.00000
0.00000 -0.30777 0.00000
0.00000 -0.52505 0.00000
0.00000 -0.10819 0.00000
0.00000 0.16996 0.00000

Draw 2 for state and signal
3.7420 0.81724 0.00000
4.5592 0.47523 3.7420
5.0344 0.16032 4.5592
5.1948 0.0084960 5.0344
5.2033 -0.0070664 5.1948
5.1962 0.32165 5.2033
5.5178 0.013881 5.1962
5.5317 -0.51117 5.5178
5.0206 -0.61936 5.5317
4.4012 -0.44940 5.0206

4.5 Missing values

The algorithms of SsfPack can deal with missing values. When observations within the data
matrix mY are missing, they must be given the value −9999.99. The Kalman filter recognises
these values only within mY. A vector of observations yt with missing elements is reduced to
vector y†t without missing values and the measurement equation is adjusted accordingly. For
example, the measurement equation yt = ct + Ztαt +Gtεt with

yt =


5
−9999.99
3
−9999.99
−9999.99

 , ct =


1
2
3
4
5

 , Zt =


Z1,t

Z2,t

Z3,t

Z4,t

Z5,t

 , Gt =


G1,t

G2,t

G3,t

G4,t

G5,t

 ,
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reduces to the measurement equation y†t = c†t + Z†
tαt +G†

tεt with

y†t =

(
5
3

)
, c†t =

(
1
3

)
, Z†

t =

(
Z1,t

Z3,t

)
, G†

t =

(
G1,t

G3,t

)
.

The Kalman filter smoother and the simulation smoother step at time t is based on y†t instead
of yt. When the full vector yt is missing, for example when a single observation is missing in
univariate cases, the Kalman filter reduces to a prediction step, that is

at+1 = dt + Ttat, Pt+1 = TtPtT
′
t +HtH

′
t,

such that vt = 0, F−1
t = 0 and Kt = 0. The moment and simulation smoother deal with these

specific values of vt, F−1
t and Kt without further complications.

Example The following Ox program applies the Kalman filter and smoother for the local
linear trend model (6) with σ2

η = 0, σ2
ζ = 0.1 and σ2

ε = 1 using data with missing entries.
Ox code of ssfmiss.ox:

#include <oxstd.h>
#include "ssfpack.h"

main()
{
decl mY, mPhi, mOmega, mKF, mKS;
mY = <1,-9999.99,2,5,-9999.99,4,6,-9999.99,3>;
mPhi = <1,1;0,1;1,0>;
mOmega = diag(<0.0,0.1,1>);
mKF = KalmanFil(mY, mPhi, mOmega);
mKS = KalmanSmo(mKF, mPhi, mOmega);
print("Kalman filter output", mKF’);
print("Kalman smoother output", mKS’);

}

Ox output:

Kalman filter output
1.0000 0.99999 0.00000 9.9999e-006

-10000. 0.00000 0.00000 0.00000
1.0000 1.5000 0.50000 2.5000e-006
2.5000 1.0345 0.31034 0.27586

-10000. 0.00000 0.00000 0.00000
-2.8621 1.0355 0.25434 0.21887
0.82566 0.81893 0.20802 0.38909
-10000. 0.00000 0.00000 0.00000
-4.1181 0.95750 0.23380 0.27629

Kalman smoother output
1.3683e-005 8.0384e-006 0.00000 9.9999e-006 1.0000e-005 0.00000

0.36827 -0.36826 -0.36826 0.27629 0.27630 0.27630
0.36827 -0.73654 0.00000 0.27629 1.1052 0.00000
1.3074 -2.0439 -0.93912 0.38929 1.4647 0.68048

-0.060121 -1.9838 1.3675 0.29058 1.1741 0.69991
-0.060121 -1.9237 0.00000 0.29058 1.4647 0.00000
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0.35193 -2.2756 -0.41205 0.38929 1.1052 0.69991
-1.1378 -1.1378 1.4897 0.27629 0.27629 0.68048
-1.1378 0.00000 0.00000 0.27629 0.00000 0.00000
0.00000 0.00000 -1.1378 0.00000 0.00000 0.27629

5 Gaussian applications: ready-to-use functions

5.1 Likelihood and score evaluation

The Kalman filter allows the computation of the Gaussian log-likelihood function via the pre-
diction error decomposition; see Schweppe (1965), Jones (1980) and Harvey (1989). The log-
likelihood function is, ignoring constants, given by

l = log p (y1, . . . , yn;ϕ) =
n∑
t=1

log p (yt|y1, . . . , yt−1;ϕ)

= constant − 1
2

n∑
t=1

(
log |Ft| + v′tF

−1
t vt

)
(26)

where ϕ is the vector of parameters for a specific statistical model represented in state space
form. The innovations vt and its variances Ft (t = 1, . . . , n) are computed by the Kalman filter
applied to the model in state space for a given vector ϕ.

The score vector for Gaussian models in state space form is usually evaluated numerically.
Koopman and Shephard (1992) present a method to calculate the exact score for any parameter
within the system matrices T , Z, H and G. A computational gain (compared to numerical
evaluation) is achieved for the exact score with respect to parameters in H and G. Let the ith
element of ϕ, that is ϕi, be associated with the time-invariant system matrix Ω of (5), then the
exact score for this element is given by

∂l

∂ϕi
=

1
2
tr

(
S
∂Ω
∂ϕi

)
, with S =

n∑
t=1

r̄tr̄
′
t − N̄t, (27)

where r̄t and N̄t are defined in (and calculated by) the smoothing algorithm of section 4.3.
Consider the model in state space form of the structure

yt = θt +G†
tε

†
t , ε†t ∼ N

(
0, σ2I

)
, σ2 > 0,

with unknown variance σ2, with signal θt = Ztαt. The state space form (1) and (2) applies but
with Gt = σG†

t and Ht = σH†
t . Note that at least one unknown element of G†

t or H†
t , which is

part of ϕ, must be set equal to a known scaling constant (usually this constant is equal to unity).
For this (general) class of models, the variance σ2 can be concentrated out of the log-likelihood
function which leads to the concentrated or profile likelihood. The log-likelihood (26) is then
based on the usual state space form but with Gt replaced by G†

t and Ht replaced by H†
t such

that (26) becomes

l = constant − 1
2

n∑
t=1

{
log

∣∣∣σ2Ft
∣∣∣+ 1

σ2
v′tF

−1
t vt

}
.

The maximum likelihood estimator for σ2 requires ∂l / ∂σ2 = 0 so that,

σ̃2 =
1
n

n∑
t=1

v′tF
−1
t vt. (28)
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Replacing σ2 by its estimator σ̃2 in the equation for l and dropping a constant, leads to the
concentrated or profile log-likelihood function

lc = constant − n

2
log σ̃2 − 1

2

n∑
t=1

log |Ft| . (29)

The exact score function of the concentrated or profile log-likelihood function can not be obtained
as easy as in the non-concentrated case. It is more straightforward to get the score related to
(29) by numerical methods.

SsfPack implementation The following SsfPack functions are provided for log-likelihood
and score evaluation:

SsfLik(&dLik, &dVar, mY, {Ssf});
SsfLikConc(&dConcLik, &dVar, mY, {Ssf});
SsfLikSco(&dLik, &mSco, mY, {Ssf});

Each function returns two pointers (addresses) to two matrices which are either dLik (scalar) or
dConcLik (scalar) or dVar (scalar) or mSco (matrix). These four quantities are defined by (26)
without constant, (29) without constant, (28) and matrix S in (27), respectively.

Example The following Ox program calculates these different quantities for the local linear
trend model (6) with ση = 0, σζ = 0.1 and σξ = 1.

Ox code of ssflik.ox:

#include <oxstd.h>
#include "SsfPack.h"

main()
{
decl mY, mPhi, mOmega, mSigma;
decl dLik, dVar, mSco;

mY = <1,9,2,5,8,4,6,7,3>;
GetSsfStsm(<CMP_IRREG, 1.0, 0, 0;

CMP_LEVEL, 0.1, 0, 0;
CMP_SLOPE, 1.0, 0, 0>, &mPhi, &mOmega, &mSigma);

SsfLik(&dLik, &dVar, mY, mPhi, mOmega, mSigma);
print("\n log-likelihood ", dLik);

SsfLikConc(&dLik, &dVar, mY, mPhi, mOmega, mSigma);
print("\n concentrated ", dLik);
print("\n MLE variance ", dVar);

SsfLikSco(&dLik, &mSco, mY, mPhi, mOmega, mSigma);
print("\n score vector ", diagonal(mSco));

}

Ox output:
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log-likelihood -28.298989
concentrated -11.997636
MLE variance 6.534648
score vector

10.889 3.3349 35.299

5.2 Prediction, forecasting and smoothing

5.2.1 Prediction

The Kalman filter of section 4.2 produces the one-step ahead prediction of the state vector, that
is the conditional mean E (αt|Yt−1) denoted by at, together with the variance matrix Pt, for
t = 1, . . . , n. The SsfPack function SsfMomentEst can be used to obtain these quantities.

SsfPack implementation The call of the state prediction function is given by

mState = SsfMomentEst(ST_PRED, &mPred, mY, {Ssf});

where output matrix mState contains an+1 and Pn+1. The constant ST PRED is pre-defined and
must be given when state prediction is required. The data matrix mY and the sequence {Ssf}
are as usual; see sections 2 and 4. This function also returns a data matrix containing at and the
diagonal elements of Pt, for t = 1, . . . , n. The structure of the output data matrices are given
by

mState =

[
Pn+1

a′n+1

]
, mPred =


a1 . . . an
ȳ1 . . . ȳn
diag (P1) . . . diag (Pn)
diag (F1) . . . diag (Fn)

 ,
where ȳt = E(yt|Yt−1) and Ft = var (yt|Yt−1) = var (vt) with vt = yt− ȳt. The operation diag (A)
vectorizes the diagonal elements of A into a column vector. The output is directly obtained from
the Kalman filter. An Ox example is given in section 5.2.4.

5.2.2 Forecasting

Forecasts, together with their mean square errors, can be generated by the Kalman filter by
extending the data set y1, . . . , yn with a set of missing values. When yτ is missing, the Kalman
filter step at time t = τ reduces to

aτ+1 = Tτaτ , Pτ+1 = TτPτT
′
τ +HτH

′
τ ,

which are the state space forecasting equations; see Harvey (1989, page 147) and West and
Harrison (1997, page 39). A sequence of missing values at the end of the sample will there-
fore produce a set of multi-step forecasts. It follows that we can use the SsfPack function
SsfMomentEst also for forecasting. The Ox example in section 5.2.4 shows how this can be
implemented in a clever way.

5.2.3 State smoothing

The evaluation of α̂t = E(αt|Yn) and variance matrix Vt = var (αt|Yn) is referred to as moment
state smoothing. The usual state smoothing algorithm can be found in Anderson and Moore
(1979, page 165) and Harvey (1989, page 149). Computationally more efficient algorithms are
developed by de Jong (1988a) and Kohn and Ansley (1989). Koopman (1997) shows how the
different algorithms are related. The state smoother in SsfPack is given by

α̂t = at + Ptrt−1, Vt = Pt − PtNt−1Pt, t = n, . . . , 1, (30)
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where rt−1 and Nt−1 are evaluated by (22). Evaluation of these quantities requires a substantial
amount of storage space due to the requirement of at and Pt. Note that at and Pt are evaluated
in a forwards fashion and the state smoother is a backwards operation. This storage requirement
is additional to the storage space required for the evaluation of rt−1 and Nt−1; see section 4.3.
When only the smoothed state α̂t is required, more efficient methods of calculation are at present;
see sections 4.3.2 and 5.3.1.

SsfPack implementation The call for state smoothing function is

mSmo = SsfMomentEst(ST_SMO, &mStSmo, mY, {Ssf});

where mSmo contains r0 andN0. The constant ST SMO is pre-defined and must be given when state
smoothing is required. The data matrix mY and the sequence {Ssf} are as usual; see sections 2
and 4. The function returns also a data matrix containing α̂t and the diagonal elements of Vt,
for t = 1, . . . , n. The structure of the output data matrices are given by

mSmo =

[
N0

r′0

]
, mStSmo =


α̂1 . . . α̂n
θ̂1 . . . θ̂n
diag (V1) . . . diag (Vn)
diag (S1) . . . diag (Sn)

 ,
where θ̂t = ct +Ztα̂t is the smoothed estimate of the signal θt = ct +Ztαt with variance matrix
St = ZtVtZ

′
t. The operation diag (A) vectorizes the diagonal elements of A into a column vector.

An Ox example is given in section 5.2.4.

5.2.4 An example

The following Ox example shows how to obtain predictions, forecasts and smoothed estimates
of the state vector for the local linear trend model using an artificial data set.

Ox code of ssfstate.ox:

#include <oxstd.h>
#include "ssfpack.h"

main()
{
decl mY, mYF, mPhi, mOmega, mState, mKF, mKS, mFor;
mY = <1,9,2,5,8,4,6,7,3>; // data matrix
mYF = -9999.99 * ones(1, 3); // matrix of missing values
mPhi = <1,1;0,1;1,0>;
mOmega = diag(<0.0,0.1,1>);

mState = SsfMomentEst(ST_PRED, &mKF, mY, mPhi, mOmega);
print("Final state matrix", mState);
print("State prediction", mKF’);

SsfMomentEst(ST_PRED, &mFor, mYF, mPhi, mOmega, mState);
print("Forecasts 1-3 steps ahead", mFor’);

mState = SsfMomentEst(ST_SMO, &mKS, mY, mPhi, mOmega);
print("Final smoothing matrix", mState);
print("State smoothing", mKS’);

}
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Ox output:

Final state matrix
1.2387 0.47372

0.47372 0.3624
4.3192 -0.46616

State prediction
0 0 0 1e+005 1e+005 1e+005

0.99999 0 0.99999 1e+005 1e+005 1e+005
17 7.9999 17 5.0999 2.2 6.0999

4.8361 0.37706 4.8361 2.477 0.72459 3.477
5.3833 0.43047 5.3833 1.7195 0.45554 2.7195
8.1238 1.086 8.1238 1.4182 0.38484 2.4182
5.8784 0.17303 5.8784 1.2956 0.36631 2.2956
6.1459 0.19887 6.1459 1.252 0.3627 2.252
6.9998 0.37908 6.9998 1.2404 0.36244 2.2404

Forecasts 1-3 steps ahead
4.3192 -0.46616 4.3192 1.2387 0.3624 2.2387
3.853 -0.46616 3.853 2.5485 0.4624 3.5485

3.3869 -0.46616 3.3869 4.6831 0.5624 5.6831
Final smoothing matrix
9.999946e-006 2.113182e-011
2.113182e-011 9.999985e-006
3.610624e-005 7.615753e-006

State smoothing
3.6106 0.76158 3.6106 0.55364 0.1624 0.55364
4.3722 0.50051 4.3722 0.2934 0.1002 0.2934
4.8727 0.44116 4.8727 0.22729 0.072275 0.22729
5.3139 0.29625 5.3139 0.22134 0.063335 0.22134
5.6101 0.034399 5.6101 0.22325 0.063335 0.22325
5.6445 -0.10541 5.6445 0.22134 0.072275 0.22134
5.5391 -0.28762 5.5391 0.22729 0.1002 0.22729
5.2515 -0.46616 5.2515 0.2934 0.1624 0.2934
4.7853 -0.46616 4.7853 0.55365 0.2624 0.55365

5.2.5 Disturbance smoothing

The smoothed estimate of the disturbance vector ut = (H ′
t, G

′
t)
′ εt of the state space form

(4), denoted by ût (t = 1, . . . , n), is discussed in section 4.3. It is noticable that disturbance
smoothing can be represented as the simple algorithm

ût = Ωtr̄t, var (ût) = ΩtN̄tΩt,
rt−1 = Φtr̄t, Nt−1 = ΦtN̄t,Φ′

t, t = n, . . . , 1,

where r̄t and N̄t are defined in step (ii) of the algorithm in section 4.3; see also Koopman (1993).

SsfPack implementation The call of the disturbance smoothing function is given by

mSmo = SsfMomentEst(DS_SMO, &mDisturb, mY, {Ssf});

where mSmo contains r0 and N0. The constant DS SMO is pre-defined and must be given when
disturbance smoothing is required. The data matrix mY and the sequence {Ssf} are as usual; see
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section 4.2. This function also returns a data matrix containing ε̂t and the diagonal elements of
var (ε̂t), for t = 1, . . . , n. The structure of the output data matrices are given by

mSmo =

[
N0

r′0

]
, mDisturb =


H1ε̂1 . . . Hnε̂n
G1ε̂1 . . . Gnε̂n
diag {var (H1ε̂1)} . . . diag {var (Hnε̂n)}
diag {var (G1ε̂1)} . . . diag {var (Gnε̂n)}

 .
The operation diag (A) vectorizes the diagonal elements of A into a column vector. An Ox
example is given in below.

Example The following Ox example shows how to obtain smoothed estimates of the dis-
turbance vector for the local linear trend model using an artificial data set.

Ox code of ssfds.ox:

#include <oxstd.h>
#include "ssfpack.h"

main()
{
decl mY, mPhi, mOmega, mDS, mSmo;
mY = <1,9,2,5,8,4,6,7,3>;
mPhi = <1,1;0,1;1,0>;
mOmega = diag(<0.0,0.1,1>);

mSmo = SsfMomentEst(DS_SMO, &mDS, mY, mPhi, mOmega);
print("Final smoothing matrix", mSmo);
print("Disturbance smoothing", mDS’);

}

Ox output:

Final smoothing matrix
9.9999e-006 2.1132e-011
2.1132e-011 1.0000e-005
3.6106e-005 7.6158e-006

Disturbance smoothing
0.00000 -0.26107 -2.6106 0.00000 0.0044636 0.44636
0.00000 -0.059351 4.6278 0.00000 0.011227 0.70660
0.00000 -0.14491 -2.8727 0.00000 0.016135 0.77271
0.00000 -0.26185 -0.31387 0.00000 0.017810 0.77866
0.00000 -0.13981 2.3899 0.00000 0.016135 0.77675
0.00000 -0.18221 -1.6445 0.00000 0.011227 0.77866
0.00000 -0.17853 0.46089 0.00000 0.0044635 0.77271
0.00000 0.00000 1.7485 0.00000 0.00000 0.70660
0.00000 0.00000 -1.7853 0.00000 0.00000 0.44635

5.3 The conditional density: mean calculation and simulation

5.3.1 Quick mean calculation of states

When only the mean of the multivariate conditional density f (α1, . . . , αn|Yn), that is smoothed
state vector α̂t = E(αt|Yn), for t = 1, . . . , n, is required, the following simple forwards recursion
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can be used, that is
α̂t+1 = dt + Ttα̂t +Htε̂t, t = 1, . . . , n − 1,

with α̂1 = a + Pr0 and ε̂t = E(εt|Yn) = H ′
trt + G′

tet; see Koopman (1993) and section 4.3.2.
The smoothing quantities et and rt are obtained from (22). This algorithm does not require the
additional storage space from the Kalman filter, that is at and Pt for t = 1, . . . , n, as required
for general state moment smoothing. It is also computationally much more efficient. In most
practical situations interest is limited to the smoothed state vector α̂t and the smoothed estimate
of the signal ct+Ztα̂t. The SsfPack function SsfCondDens calculates these quantities using this
quick state smoothing method.

5.3.2 Simulation for states

The simulation smoother is also able to generate simulations from f (α|Yn), where α = (α′
1, . . . , α

′
n)

′,
for a given model in state space form; see de Jong and Shephard (1995) and section 4.4. The

simulations are denoted by α(·) =
(
α

(·)′
1 , . . . , α

(·)′
n

)′
. The simulation smoother, with an appro-

priate choice of the selection matrix outputs the simulation draws H1ε
(·)
1 , . . . ,Hnε

(·)
n from which

the simulated states can be obtained via the state space recursion

α
(·)
t+1 = dt + Ttα

(·)
t +Htε

(·)
t , t = 1, . . . , n,

with the initialisation α
(·)
1 = a + Pr0 where r0 is obtained from the simulation smoother (24).

Consistent simulations for the signal θt are obtained via the relation θ
(·)
t = ct + Ztα

(·)
t , for

t = 1, . . . , n. The SsfPack function SsfCondDens outputs these simulations. Note that when no
consistency is required between θ(·) and α(·), simulation samples for θ(·) are much easier obtained
using the relationship θ

(·)
t = yt −Gtε

(·)
t ; see the discussion in section 4.4.

5.3.3 Mean calculation of disturbances

The mean of the multivariate conditional density f (u1, . . . , un|Yn), where ut = (H ′
t, G

′
t)
′ εt as

defined in (4), is denoted by û = (û1, . . . , ûn) and its calculation is discussed in sections 4.3 and
5.2.5. The SsfPack function SsfCondDens allows calculation of û in a computationally efficient
way and outputs only û. The SsfPack function SsfCondDens produces these simulations.

5.3.4 Simulation for disturbances

Generating samples from f (u|Yn) for a given model in state space form is done via the sim-
ulation smoother; the details are given in section 4.4. The SsfPack function SsfCondDens is
able to output a draw from f (u|Yn) which is denoted by u(·). As pointed out by de Jong and
Shephard (1995), the simulation smoother cannot draw from f (u|Yn) directly because of the
implied identities within the state space form (4); this problem is referred to as degenerate
sampling. However it can simulate from f (H1ε1, . . . ,Hnεn|Yn) directly and then computing
the sample θ(·) as discussed in section 5.3.2. The identity Gtεt = yt − θt allows the generation
of simulation samples from f (G1ε1, . . . , Gnεn|Yn) which are consitent with the sample from
f (H1ε1, . . . ,Hnεn|Yn). In this way the SsfPack function SsfCondDens computes consistent sim-
ulation samples for the disturbance vector u. Finally, when the rank of Ht is smaller than Gt
the described method of getting simulations from f (u|Yn) is not valid and the SsfPack function
should not be used for simulation. Instead, the simulation smoother should be applied directly
as described in section 4.4.
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SsfPack implementation The SsfPack call for calculating mean and simulation for the
multivariate conditional densities of the disturbances and the states is given by

mD = SsfCondDens(iSel, mY, {Ssf});

where the structure of the output matrix mD depends on the value of iSel which can only take
the value of the predefined constants:

DS SMO computes the mean of f (u|Yn) ;
DS SIM produces simulation sample from f (u|Yn) ;
ST SMO computes the mean of f (α|Yn) ;
ST SIM produces simulation sample from f (α|Yn) .

The output matrix mD for the different tunings is given by

DS SMO : mD =
[
û1 . . . ûn

]
,

DS SIM : mD =
[
u

(·)
1 . . . u

(·)
n

]
,

ST SMO : mD =

[
α̂1 . . . α̂n
θ̂1 . . . θ̂n

]
,

ST SIM : mD =

[
α

(·)
1 . . . α

(·)
n

θ
(·)
1 . . . θ

(·)
n

]
,

where θ̂t = ct + Ztα̂t is the smoothed estimate of the signal ct + Ztαt and θ(·)
t is the associated

simulation. The inputs mY and {Ssf} are as usual.

Example The following Ox example produces the mean and a simulation sample from the
conditional density of the disturbances and the states for the local linear trend model using
an artificial data set. The Ox function ranseed is used to let the two simulation samples be
comparable with each other.

Ox code of ssfcond.ox:

#include <oxstd.h>
#include "ssfpack.h"

main()
{
decl mY, mPhi, mOmega, mD;
mY = <1,9,2,5,8,4,6,7,3>;
mPhi = <1,1;0,1;1,0>;
mOmega = diag(<0.0,0.1,1>);

mD = SsfCondDens(DS_SMO, mY, mPhi, mOmega);
print("mean disturbance", mD’);
ranseed(5);
mD = SsfCondDens(DS_SIM, mY, mPhi, mOmega);
print("simulation disturbance", mD’);
mD = SsfCondDens(ST_SMO, mY, mPhi, mOmega);
print("mean state", mD’);
ranseed(5);
mD = SsfCondDens(ST_SIM, mY, mPhi, mOmega);
print("simulation state", mD’);

}
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Ox output:

mean disturbance
0.00000 -0.26107 -2.6106
0.00000 -0.059351 4.6278
0.00000 -0.14491 -2.8727
0.00000 -0.26185 -0.31387
0.00000 -0.13981 2.3899
0.00000 -0.18221 -1.6445
0.00000 -0.17853 0.46089
0.00000 0.00000 1.7485
0.00000 0.00000 -1.7853

simulation disturbance
0.00000 -0.30023 -2.3523
0.00000 0.0035786 4.7010
0.00000 -0.41161 -2.9454
0.00000 -0.34580 -0.59544
0.00000 -0.16944 2.1661
0.00000 -0.14802 -1.7265
0.00000 0.17320 0.55037
0.00000 0.43605 1.9752
0.00000 0.17320 -1.7731

mean state
3.6106 0.76158 3.6106
4.3722 0.50051 4.3722
4.8727 0.44116 4.8727
5.3139 0.29625 5.3139
5.6101 0.034399 5.6101
5.6445 -0.10541 5.6445
5.5391 -0.28762 5.5391
5.2515 -0.46616 5.2515
4.7853 -0.46616 4.7853

simulation state
3.3523 0.94668 3.3523
4.2990 0.64645 4.2990
4.9454 0.65002 4.9454
5.5954 0.23841 5.5954
5.8339 -0.10739 5.8339
5.7265 -0.27683 5.7265
5.4496 -0.42485 5.4496
5.0248 -0.25166 5.0248
4.7731 0.18439 4.7731

6 Gaussian illustrations

6.1 Maximum likelihood estimation

The exact maximum likelihood estimates of, for example, parameters of an ARMA model (see
section 3.1) or unknown variances of a structural time series model (see section 3.2) can be
obtained by maximizing a likelihood criterion via a numerical optimisation routine. A number
of optimisation routines are provided by Ox. In the following we use the MaxBFGS function of
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Ox, see Doornik (1996), for estimating a local level model which is given by

yt = µt + ξt, εt ∼ NID
(
0, σ2

ξ

)
,

µt+1 = µt + ηt, ηt ∼ NID
(
0, σ2

η

)
, t = 1, . . . , n, (31)

with µ1 ∼ N (0, κ) and κ large. This model has two unknown variances which are re-parameterised
as

σ2
η = exp (2ϕ0) , σ2

ξ = exp (2ϕ1) , (32)

so that the likelihood criterion can be maximised without constraints with respect to ϕ =
(ϕ0, ϕ1)

′. Likelihood evaluation for a given vector ϕ = ϕ∗ takes place via the SsfPack function
SsfLik after the variances σ2∗

η and σ2∗
ξ are computed using (32). The score (27) is calculated by

∂l

∂ϕ0

∣∣∣∣ ϕ = ϕ∗ = σ2∗
η S00,

∂l

∂ϕ1

∣∣∣∣ ϕ = ϕ∗ = σ2∗
ξ S11,

where Sij is the (i, j)-th element of matrix S in (27) for ϕ = ϕ∗. Matrix S can be obtained
directly from the SsfPack function SsfLikSco.

Example The following Ox program estimates the parameters of the local level model (31),
with starting values ση = 0.5 and σξ = 1, for the Nile data of Appendix A. The maximization
routine is provided by Ox.

Ox code of ssfmle.ox:

#include <oxstd.h>
#include <maximize.h>
#include "SsfPack.h"
#pragma link("maximize.oxo")

static decl mY, mPhi, mOmega, mSigma;

Likelihood(const vP, const pdLik, const pvSco, const pmHes)
{
decl dVar, mSco;
mOmega[0][0] = exp(2.0 * vP[0][0]);
mOmega[1][1] = exp(2.0 * vP[1][0]);
if (pvSco)
{
SsfLikSco(pdLik, &mSco, mY, mPhi, mOmega, mSigma);
pvSco[0][0][0] = mOmega[0][0] * mSco[0][0];
pvSco[0][1][0] = mOmega[1][1] * mSco[1][1];
}
else
SsfLik(pdLik, &dVar, mY, mPhi, mOmega, mSigma);
return 1;

}

main()
{
decl vp, vs, mhes, ir, dLik, dVar;
mY = loadmat("Nile.dat")’;
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GetSsfStsm(<CMP_IRREG, 1.0, 0, 0;
CMP_LEVEL, 0.5, 0, 0>, &mPhi, &mOmega, &mSigma);

// scale initial parameter estimates
vp = zeros(2, 1);
vp[0] = log(0.5);
SsfLik(&dLik, &dVar, mY, mPhi, mOmega, mSigma);
vp += 0.5 * log(dVar);

// maximum likelihood estimation
vs = zeros(2, 1);
mhes = unit(2);
Likelihood(vp, &dLik, 0, 0);
MaxControl(50, 10);
ir = MaxBFGS(Likelihood, &vp, &dLik, &mhes, FALSE);

print("\n", MaxConvergenceMsg(ir),
" using analytical derivatives",
"\nFunction value = ", dLik, "; parameters:", vp);

print("Omega", mOmega);
}

Ox output:

Starting values
parameters

4.0325 4.7257
gradients

-2.1358 2.6475
Initial function = -548.011132936

Position after 7 BFGS iterations
Status: Strong convergence
parameters

3.6537 4.8124
gradients
-1.4887e-009 -4.7100e-010

function value = -547.529493002

Strong convergence using analytical derivatives
Function value = -547.529; parameters:

3.6537
4.8124

Omega
1491.4 0.00000

0.00000 15135.

6.2 Detecting outliers and structural breaks

General procedures for testing for outliers and structural breaks based on models in state space
form are discussed by Harvey, Koopman, and Penzer (1998). Such irregularities in data can be
modelled in terms of impulse interventions applied to the equations of the state space form. For
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example, an outlier can be captured within the measurement equation by a dummy explanatory
variable, known as an impulse intervention variable, which takes the value one at the time of the
outlier and zero elsewhere. The estimated regression coefficient of this variable is an indication
whether an outlying observation is present. In the case of unobserved component time series
models, this approach reduces to a procedure based on the so-called auxiliary residuals. The
standardised residuals associated with the measurement and system equations are computed via
a single filter and smoothing step; see section 4.3 and section 5.2.5. These auxiliary residuals are
introduced and studied in detail by Harvey and Koopman (1992); they show that these residuals
are an effective tool for detecting outliers and breaks in time series and for distinguishing between
them. de Jong and Penzer (1998) have shown that auxiliary residuals are equivalent to t-statistics
for the impulse intervention variables.

Example The following Ox example reports whether the absolute values of the auxiliary
residuals exceed some benchmark implying that an outlier or break is present in the series. The
Nile data of Appendix A and the local level model (31), with standard deviations equal to their
estimates of the example in section 6.1, are considered.

Ox code of ssfoutl.ox:

#include <oxstd.h>
#include "SsfPack.h"
main()
{
decl mY, mPhi, mOmega, mSigma, mD, mS;
// data
mY = loadmat("Nile.dat")’;
// stuctural time series model
GetSsfStsm(<CMP_LEVEL, 38, 0, 0;

CMP_IRREG, 123, 0, 0>, &mPhi, &mOmega, &mSigma);
// smoothed state vector
SsfMomentEst(DS_SMO, &mD, mY, mPhi, mOmega, mSigma);
// auxiliary residuals
mS = mD[0:1][]./sqrt(mD[2:3][]);
if (fabs(mS[0][1:98]) < 3) print("\n no structural break");
else print("\n structural break(s)");
if (fabs(mS[1][]) < 3) print("\n no outlier");
else print("\n outlier(s)");

}

Ox output:

structural break(s)
outlier(s)

6.3 Regression analysis

When the standard regression model yt = Xtβ + ξt with ξt ∼ NID
(
0, σ2

)
is placed in the state

space form, the Kalman filter reduces to what is known as ‘recursive least squares’ algorithm;

see ... The state prediction at is the least squares estimate
(∑t−1

j=1XtX
′
t

)−1 (∑t−1
j=1Xtyt

)
and

matrix Pt is the matrix
(∑t−1

j=1XtX
′
t

)−1
. Therefore, the SsfPack function SsfStateEst can be

used to obtain these quantities and to obtain the final OLS estimates, that is an+1 and Pn+1. It
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is easy within Ox to get, for example, the residual sum of squares, the goodness-of-fit measure
R2 and the t-test statistics.

Additional statistical output is obtained from smoothing. Following the arguments of de Jong
and Penzer (1998), the output of the basic smoothing recursions can be used to construct t-tests
for structural changes in regression models. Consider the state space framework for a regression
model with the 1 × k vector of explanatory variables Xt = (x1,t, . . . , xk,t) and the k × 1 vector
of coefficients β = (β1, . . . βk)

′, that is

yt = x1,tβ1 + . . .+ x1,tβk + ξt, t = 1, . . . , n,

where ξt ∼ NID
(
0, σ2

)
. The null hypothesis with respect to the ith explanatory variable,

yt = . . .+ xi,tβi + . . .+ ξt, for t = 1, . . . , τ,
yt = . . .+ xi,tβ

∗
i + . . .+ ξt, for t = τ + 1, . . . , n,

against the alternative βi = β∗i can be tested via the t-test

ri,τ/
√
Nii,τ , τ = 1, . . . , n− 1,

where rt = (r1,t, . . . rp,t)
′ and Nt, with the element (i, i) denoted as Nii,t, are evaluated using the

basic smoothing recursions (22). It is remarkable that (n− 1) k t-tests can be computed from a
single run of the basic smoother. The t-test is distributed as a t distribution with n− k degrees
of freedom. When the t-test is relatively large, the null hypothesis is not rejected.

Example The following Ox example outputs the least squares estimates, the standard
errors and the t-tests for a standard regression model with three explanatory variables. The
t-tests for structural changes are also outputted. The data is generated such that the null
hypothesis of a structural change of regression coefficient 2 at time τ = 10 should be accepted.

Ox code of ssfregan.ox:

#include <oxstd.h>
#include "ssfpack.h"

main()
{
decl mY, mX, mPhi, mOmega, mSigma, mJ_Phi, mKF, mKS, mOLS;
mY = rann(1,20);
mX = rann(3,20);
mX[1][10:19] = (mX[1][10:19]+(3.0 * mY[0][10:19])) / 4.0;

GetSsfReg(mX, &mPhi, &mOmega, &mSigma, &mJ_Phi);

mOLS = SsfMomentEst(ST_PRED, &mKF, mY, mPhi, mOmega, mSigma,
<0>, mJ_Phi, <0>, <0>, mX);

print("Regression");
print("%r",{"x1","x2","x3"},"%c",{"ols","s.e.","t-test"},
mOLS[3][]’~diagonal(mOLS)’~(mOLS[3][]./sqrt(diagonal(mOLS)))’);

mKF = KalmanFil(mY, mPhi, mOmega, mSigma, <0>, mJ_Phi, <0>, <0>, mX);
mKS = KalmanSmo(mKF, mPhi, mOmega, mSigma, <0>, mJ_Phi, <0>, <0>, mX);
print("\nStructural change t-test");
print("%c", {"obs.nr","x1", "x2", "x3"},
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<2:20>’~(mKS[0:2][1:19]./sqrt(mKS[4:6][1:19]))’);
}

Ox output:

Regression
ols s.e. t-test

x1 -0.0065340 0.051600 -0.028764
x2 0.44674 0.084515 1.5367
x3 0.20491 0.070790 0.77016

Structural change t-test
obs.nr x1 x2 x3
2.0000 0.91488 0.91500 -0.91499
3.0000 -0.53003 1.1276 -1.1032
4.0000 -0.50773 0.83053 -0.98702
5.0000 -1.0655 1.6978 -1.7035
6.0000 -1.1224 1.2906 -1.0307
7.0000 -0.74924 1.2659 -1.0426
8.0000 -0.64998 1.6776 -0.42568
9.0000 -0.38892 1.4079 -0.42345
10.000 -0.40212 2.0990 -1.0300
11.000 -0.39656 2.0958 -0.83555
12.000 -0.20730 2.0803 -0.92720
13.000 -0.69921 1.9515 -0.70051
14.000 0.11300 1.6878 -0.41237
15.000 -0.25228 1.2906 -0.87842
16.000 -0.25383 1.2874 -0.82397
17.000 0.39532 0.82284 -0.27782
18.000 0.57649 0.79318 -0.27915
19.000 0.57986 0.78607 -0.35359
20.000 -0.38331 0.38331 0.38331

6.4 Spline smoothing and interpolation

The nonparametric spline method can be regarded as an interpolation technique. Consider a set
of observations which are spaced at equal intervals but some observations are missing. To ‘fill
in the gaps’ the spline model of section 3.4 can be considered. Applying filtering and smoothing
to this model, we obtain the estimated signal. In this way, a graphical representation of the
nonparametric spline can be produced.

Example The following Ox example outputs the least squares estimates, the standard
errors and the t-tests for a standard regression model with three explanatory variables. The
t-tests for structural changes are also outputted. The data is generated such that the null
hypothesis of a structural change of regression coefficient 2 at time τ = 10 should be accepted.

Ox code of ssfsplan.ox:

#include <oxstd.h>
#include "SsfPack.h"
main()
{
decl mDelta, mPhi, mOmega, mJ_Phi, mJ_Omega, mY, mX, mD;
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mDelta = <1,1,1,1,1,1,1,1,1>;
mY = <30,-9999.99,-9999.99,45,-9999.99,65,-9999.99,-9999.99,35>;
// cubic spline model with q = 0.7
GetSsfSpline(0.7, mDelta, &mPhi, &mOmega, &mJ_Phi, &mJ_Omega, &mX);
// smoothed state vector
mD = SsfCondDens(ST_SMO, mY, mPhi, mOmega,<0>,<0>,mJ_Phi, mJ_Omega,<0>,mX);
print("Data and interpolations", "%12.2f", mY’~mD[0][]’);

}

Ox output:

Data and interpolations
30.00 30.06

-9999.99 36.56
-9999.99 43.01

45.00 49.36
-9999.99 55.08

65.00 57.55
-9999.99 54.56
-9999.99 47.35

35.00 38.02

6.5 Seasonal adjustment and detrending

Seasonal adjustment is a relatively easy task when time series are modelled as an unobserved
components time series model in which a seasonal component is included; see section 3.2. The
estimated seasonal component is substracted from the original time series in order to get the
seasonally adjusted series. In the same way the original time series is detrended by substracting
the estimated trend component.

Example The following Ox example outputs the seasonally adjusted series for the Airline
data of Appendix B. The original data is logged and is modelled by a model with trend and
trigonometric seasonal components.

Ox code of ssfseas.ox:

#include <oxstd.h>
#include "SsfPack.h"
main()
{
decl mY, mPhi, mOmega, mSigma, mD, mS;
// data
mY = log(loadmat("Airline.dat"))’;
// stuctural time series model
GetSsfStsm(<CMP_IRREG, 0.9, 0, 0;

CMP_LEVEL, 1.0, 0, 0;
CMP_SLOPE, 0.0, 0, 0;
CMP_SEAS_TRIG, 0.1, 12, 0>, &mPhi, &mOmega, &mSigma);

// smoothed state vector
mD = SsfCondDens(ST_SMO, mY, mPhi, mOmega, mSigma);
mS = mY - <0,0,1,0,1,0,1,0,1,0,1,0,1,0> * mD;
print("Seasonally adjusted data", mS);

}
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Ox output:

Seasonally adjusted data
4.8191 4.8232 4.8247 4.8415 4.8297 4.8213
4.8196 4.8251 4.8406 4.8567 4.8705 4.8602
4.8477 4.8899 4.8883 4.8948 4.8616 4.9178

...
6.0542 6.0786 6.0807 6.0796 6.1060 6.1196
6.1153 6.1128 6.0819 6.1488 6.1539 6.1564
6.1756 6.1633 6.1758 6.1959 6.1841 6.1874

6.6 Monte Carlo simulations and parametric bootstrap tests

Statistical methods such as Monte Carlo and bootstrap require random samples from the
unconditional distribution implied by the model in state space form. The SsfPack function
SsfRecursion can be useful in this respect. For illustrative purposes, we will present a simple
parametric bootstrap procedure for testing for a unit root when the null is stationarity. This
problem has been extensively studied in the literature. The initial work was carried out by
Nyblom and Makelainen (1983) and Tanaka (1983), while the more recent work is reviewed in
Tanaka (1996, Ch. 10).

Consider the local level model (31) and the vector of univariate observations y = (y1, . . . , yn)
′.

The hypothesis
Ho : σ2

η = 0, H1 : σ2
η > 0,

imply that yt is a stationary series under the null hypothesis and that yt has a unit root oth-
erwise. The null also implies the level µ0 = · · · = µn = µ and that the constrained maximum
likelihood estimators of µ and σ2

ε are simply the sample average y and the sample variance
σ̂2
ε = 1

n

∑n
t=1 (yt − y)2.

The null hypothesis can be tested using a score test which has the form of

s =
∂l(y; θ)
∂σ2

η

∣∣∣∣∣
σ2
η = 0, µ = y, σ2

ε = σ̂2
ε

,

and the null hypothesis is rejected if the score is relatively large. This statistic is, up to a
constant, the same as the locally best invariant (LBI) test and is known to be asymptotically
pivotal (see, for example, Tanaka (1996, Ch. 10.7)) although the form of the distribution is
complicated and has to be derived by numerically inverting a characteristic function or by
simulation.

A bootstrap test for the null hypothesis is particularly straightforward for this problem.
Define y(j) as a sample of size n drawn from NID(y, σ̂2

ε). Then for each draw the corresponding
score statistic is computed, that is

sj =
∂l(y(j); θ)
∂σ2

η

∣∣∣∣∣
σ2
η = 0, µ = y(j), σ2

ε = 1
n

∑n
t=1

(
y

(j)
t − y(j)

)2
.

The observed value s is compared with a population of simulated score statistics sj, j = 1, . . . ,M ,
for some predefined integer M . This bootstrap test is easily generalised for more general settings.

Interestingly the bootstrap test for the local level model can be made exact if we simulate y(j)

in a slightly different way. Define u(j) as a sample of size n drawn from NID(0, I). Transforming
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the generated sample by

y∗(j) = y + σ̂ε
u(j) − u(j)√

1
n

∑n
t=1

(
u

(j)
i − u(j)

)2
,

for each y∗(j), it follows that the identies y∗(j) = y and 1
n

∑n
t=1

(
y
∗(j)
t − y∗j

)2
= σ̂2

ε apply for j =
1, . . . ,M . Thus y∗ is being simulated conditionally on the null hypothesis’ sufficient statistics.
Consequently, under the null hypothesis, the distribution of y∗ is parameter free. As a result
simulations from

s∗j =
∂l(y∗j ; θ)
∂σ2

η

∣∣∣∣∣
σ2
η = 0, µ = y, σ2

ε = σ̂2
ε

,

provide an exact benchmark for the distribution of s. For example, a test with 5% size can be
constructed using 100 simulations by recording s and then simulating s∗1, ..., s∗99. If s is one of
the largest five in the population of s, s∗1, ..., s∗99 then the hypothesis is rejected.

This exact testing procedure is difficult to extend to more complicated dynamic models and
so one usually has to rely on the asymptotic pivotal nature of the score statistic to produce good
results.

Example The exact testing procedure is implemented for the local level model with the
null hypothesis σ2

η = 0 using the Nile data of Appendix A.
Ox code of ssfboot.ox:

#include <oxstd.h>
#include "SsfPack.h"

main()
{
decl i, mY, cT, mPhi, mOmega, mSigma;
decl y_i, mn_y, sd_y, dLik, dVar, mSco, cBoot, mBoot;

mY = loadmat("Nile.dat");
GetSsfStsm(<CMP_LEVEL, 0.0, 0, 0;

CMP_IRREG, 0.0, 0, 0>, &mPhi, &mOmega, &mSigma);
cT = rows(mY);
mOmega[1][1] = varc(mY);
mn_y = meanc(mY); sd_y = varc(mY)^0.5;

cBoot = 1000;
mBoot = zeros(1, cBoot);

SsfLikSco(&dLik, &mSco, mY’, mPhi, mOmega, mSigma);
mBoot[0][0] = mSco[0][0];
print("\n bootstrap test for Nile is ", mSco[0][0]);
for (i=1; i<cBoot; i++)
{
y_i = mn_y + (sd_y * standardize(rann(cT, 1)));
SsfLikSco(&dLik, &mSco, y_i’, mPhi, mOmega, mSigma);
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mBoot[0][i] = mSco[0][0];
}
mBoot = sortr(mBoot);
print("\n 90% crit.value is ", mBoot[0][89 * cBoot / 100]);
print("\n 95% - ", mBoot[0][94 * cBoot / 100]);
print("\n 99% - ", mBoot[0][98 * cBoot / 100]);

}

Ox output:

bootstrap test for Nile is 0.748234
90% crit.value is 0.0703607
95% - 0.106543
99% - 0.180178

6.7 Bayesian parameter estimation

6.7.1 The basics

Bayesian inference on parameters indexing models has attracted a great deal of interest. Recall
that if we have a prior on the parameters ϕ of f(ϕ), then

f(ϕ|y) ∝ f(ϕ)
∫
f(y|α,ϕ)f(α|ϕ)dα = f(ϕ)f(y|ϕ).

In the Gaussian case we can evaluate f(y|ϕ) =
∫
f(y|α,ϕ)f(α|ϕ)dα using the Kalman filter.

Even though we have the posterior density up to proportionality it is still not easy to compute
posterior moments or quantiles about ϕ as this involves a further level of integration. Thus it
looks like Bayesian inference is harder than maximum likelihood estimation.

In recent years there has been enormous advances in numerical methods for computing func-
tionals of the posterior density f(ϕ|y) due to the advent of Markov chain Monte Carlo (MCMC)
methods, namely the Metropolis-Hastings algorithm and its special case the Gibbs sampling al-
gorithm. These methods have had a widespread influence on the theory and practice of Bayesian
inference. Early work on these methods appears in Metropolis, Rosenbluth, Rosenbluth, Teller,
and Teller (1953), Hastings (1970), Ripley (1977) and Geman and Geman (1984) while some
of the more recent developments, spurred by Tanner and Wong (1987) and Gelfand and Smith
(1990), are included in Chib and Greenberg (1996), Gilks, Richardson, and Spiegelhalter (1996)
and Tanner (1996, Ch. 6). Chib and Greenberg (1995) provide a detailed exposition of the
Metropolis-Hastings algorithm and include a derivation of the algorithm from the logic of re-
versibility.

The idea behind MCMC methods is to produce variates from a given multivariate density
(the posterior density in Bayesian applications) by repeatedly sampling a Markov chain whose
invariant distribution is the target density of interest — f(ϕ|y) in the above case. There are
typically many different ways of constructing a Markov chain with this property and an import-
ant goal of the literature on MCMC methods in state space models is to isolate those that are
simulation–efficient. It should be kept in mind that sample variates from a MCMC algorithm
are a high-dimensional (correlated) sample from the target density of interest. These draws
can be used as the basis for making inferences by appealing to suitable ergodic theorems for
Markov chains. For example, posterior moments and marginal densities can be estimated (sim-
ulation consistently) by averaging the relevant function of interest over the sampled variates.
The posterior mean of ϕ is simply estimated by the sample mean of the simulated ϕ values.
These estimates can be made arbitrarily accurate by increasing the simulation sample size. The
accuracy of the resulting estimates (the so called numerical standard error) can be assessed by

46



standard time series methods that correct for the serial correlation in the draws. The serial
correlation can be quite high for badly behaved algorithms.

To be able to use an MCMC algorithm we need to be able to evaluate the target density up
to proportionality. This is the case for our problem as we know f(ϕ|y) ∝ f(ϕ)f(y|ϕ) using the
Kalman filter. The next subsection will review the nuts and bolts of the sampling mechanism.

6.7.2 Metropolis algorithm

We will use an independence chain Metropolis algorithm to simulate from the abstract joint
distribution of ψ1, ψ2, .., ψm. Proposals z are made to possibly replace the current ψi, keeping
constant ψ\i which is notation for all elements of ψ except ψi. The proposal density is propor-
tional to q(z, ψ\i) while the true density is proportional to f(ψi|ψ\i). Both of these densities are
assumed to be everywhere positive, with compact support and known up to proportionality. If
ψ(k) is the current state of the sampler then the proposal to take ψ(k+1) = (z, ψ(k)

\i ) is accepted
if

c < min

f(z|ψ(k)
\i )q(ψ(k)

i , ψ
(k)
\i )

f(ψ(k)
i |ψ(k)

\i )q(z, ψ(k)
\i )

, 1

 , where c ∼ UID(0, 1),

while if it is rejected we set ψ(k+1) = ψ(k). Typically we wish to design q(ψ(k)
i , ψ

(k)
\i ) to be close

to f(z|ψ(k)
\i ) but preferably with heavier tails (see, for example, Chib and Greenberg (1996)).

In the context of learning about parameters in a Gaussian state space model this algorithm
has ψ = ϕ|y. Then the task of performing MCMC on the parameters is one of design-
ing a proposal density q(ϕ(k)

i , ϕ
(k)
\i ) which will be typically be close to being proportional to

f(ϕi|ϕ(k)
\i , y) ∝ f(ϕi, ϕ

(k)
\i |y). This is not particularly easy to do, although generic methods are

available: see, for example, Gilks, Best, and Tan (1995).
In the rather simpler case where we can choose

q(ψi, ψ
(k)
\i ) = f(ψi|ψ(k)

\i ),

then the Metropolis algorithm is called a Gibbs sampler (Geman and Geman (1984) and Gelfand
and Smith (1990)) and there is never any rejection of the suggestions. Unfortunately for the un-
known parameter problems in a Gaussian model f(ϕi|ϕ(k)

\i , y) is only known up to proportionality
and so the simplicity of the Gibbs sampler is not available to us.

6.7.3 Augmentation

As the design of proposal densities for the Metropolis algorithm is sometimes difficult an al-
ternative method has been put forward by Fruhwirth-Schnatter (1994). The suggestion is of
added interest as it is the only available way to make progress when we move to non-Gaussian
problems where evaluating f(y|ϕ) =

∫
f(y|α,ϕ)f(α|ϕ)dα is generally not possible.

The suggestion is to design MCMC methods for simulating from the density π(ϕ,α|y), where
α = (α1, ..., αn) is the vector of n latent states, rather than π(ϕ|y). The draws from this joint
density provide draws from the marginal density π(ϕ|y) by simply ignoring the draws from the
states and so solve the original problem. It turns out that rather simple Markov chain Monte
Carlo procedures can be developed to sample π(ϕ,α|y). In particular we could

1. Initialize ϕ

2. Sample from the multivariate Gaussian distribution of α|y, ϕ using a simulation smoother.

3. Sample from ϕ|y, α directly or do a Gibbs or Metropolis update on the elements.
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4. Goto 2.

The key features are that the simulation smoother allows all the states to be drawn as a
block in a simple and generic way while we can usually draw from ϕ|y, α in a relatively trivial
way. To illustrate this second point, suppose the model is a local linear trend (12) with added
measurement error εt ∼ NID(0, σ2

ε ). When we draw from ϕ|y, α we act as if y, α is known.
Knowing α tells us both {µt} and {βt}. Thus we can unwrap the disturbances

ηt = µt+1 − µt + βt ∼ NID(0, σ2
η),

ζt = βt+1 − βt ∼ NID(0, σ2
ζ ),

εt = yt − µt ∼ NID(0, σ2
ε ).

Let the prior densities, for some choices of shape parameters cε, cη, cζ and scales Sσε , Sση , Sσζ
,

be given by

σ2
ε ∼ IG

(
cε
2
,
Sσε

2

)
, σ2

η ∼ IG
(
cη
2
,
Sση

2

)
, σ2

ζ ∼ IG
(
cζ
2
,
Sσζ

2

)
.

For example, the inverse gamma distribution IG for σ2
ε implies that the prior mean and variance

of σ2
ε is given by

Sσε

cε − 2
,

2S2
σε

(cε − 2)2 (cε − 4)
,

respectively. The posteriors are then given by

σ2
ε |y, α ∼ IG

(
cε + n

2
,
Sσε +

∑
ε2t

2

)
, σ2

η|y, α ∼ IG
(
cη + n

2
,
Sση +

∑
η2
t

2

)
,

σ2
ζ |y, α ∼ IG

(
cζ + n

2
,
Sσζ

+
∑
ζ2
t

2

)
.

Each of these densities are easy to sample from as shown in the Ox example program.
Although it is not always possible to sample the ϕ|y, α as easily as this, it is usually the case

that it is much easier to update the parameters having augmented the MCMC with the states
than when the states are integrated out. Of course it is often true that the MCMC algorithm is
in such a large dimension that the algorithm will only converge quite slowly. This danger needs
to be assessed carefully in applied work.

Example The Bayesian procedure for σ2
ε and σ2

η is implemented for the local level model
(31) using the Nile data of Appendix A. The prior density parameters are set to cη = cε = 5
and Sη = Sε = 5000.

Ox code of ssfbayes.ox:

#include <oxstd.h>
#include <oxprob.h>
#include "SsfPack.h"

main()
{
decl k, i, j, cIter, cInit, mY, mPhi, mOmega, mSigma;
decl S_eta, S_eps, c_eta, c_eps, mD, mPsi;

mY = loadmat("Nile.dat")’;
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GetSsfStsm(<CMP_LEVEL, 0.0, 0, 0;
CMP_IRREG, 0.0, 0, 0>, &mPhi, &mOmega, &mSigma);

mOmega[0][0] = mOmega[1][1] = 1.0;
S_eta = S_eps = 5000;
c_eta = c_eps = 2.5 + (0.5 * columns(mY));

cIter = 1000; cInit = 200;
mPsi = zeros(2, cIter);
for (i=0; i<cIter; i++)
{
mD = SsfCondDens(DS_SIM, mY, mPhi, mOmega, mSigma);
mD = mD * mD’;
mPsi[0][i] = 1.0 / rangamma(1,1, c_eta, (S_eta + mD[0][0])/2);
mPsi[1][i] = 1.0 / rangamma(1,1, c_eps, (S_eps + mD[1][1])/2);
mOmega = diag(mPsi[][i]);
}
print("%r", {"var_eta", "var_eps"},

"%c", {"mean", "st.dev."}, "%15.3f",
meanr(mPsi[][cInit:cIter-1])~
sqrt(varr(mPsi[][cInit:cIter-1])));

}

Ox output:

mean st.dev.
var_eta 1805.559 1064.927
var_eps 14125.302 2707.487

7 Header files of C functions

Here we document the header files of four C functions which can be used in other environments
such as Gauss or S+ and for other programming compilers. The functions relate to the Kal-
man filter and the associated smoothing algorithm and two functions relate to the simulation
smoother. The function calls are given and the details of the variables are given. Input and
output information for the variables is provided: the type of variable, indication whether the
variable NULL is allowed as input and a description of the variables are given. The details of
variable types are given below.

Type C definition Description

B boolean value 0 or 1
D double double precision real value
I int integer value
V *double vector of double values
M **double matrix of double values
IV *int vector of integer values
IM **int matrix of integer values
pD &double address (pointer) to double value
pI &int address (pointer) to integer value
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7.1 Kalman filter

The Kalman filter is discussed in section 4.2. The function call is

fMultiKalmanFil(cY, cT, mY, cSt, mPhi, mOmega, vDelta,
imPhi, imOmega, ivDelta, mTV,
mSigma, mP, mN,
mKF, pdLogF, pdVar, piTmD);

with return value of type boolean (B) and it returns 0 if Ft has become a negative definite
matrix. Information about the arguments are given below.

Variable I/O Type NULL Description

cY I I no N , number of rows data matrix
cT I I no n, number of columns data matrix
mY I M no data matrix (y1, . . . yn)
cSt I I no m, dimension of state vector
mPhi I M no Φ, system matrix associated with T and Z
mOmega I M no Ω, system matrix associated with H and G
vDelta I V yes δ, vector of constants associated with d and c
imPhi I IM yes JΦ, index matrix for time-varying Φ
imOmega I IM yes JΩ, index matrix for time-varying Ω
ivDelta I IV yes Jδ, index vector for time-varying δ
mTV I M yes data matrix with time-varying values
mSigma I M yes Σ, initial state matrix (P ′, a′)′

mP I M no p+ 1 × p workspace matrix
mN I M no p+ 2 × p workspace matrix
mKF I M yes k × n workspace matrix

O M k × n data matrix with Kalman filter output
pdLogF I pD yes address to double

O pD address to double ‘log-likelihood’
pdVar I pD yes address to double

O pD address to double ‘prediction error variance’
piTmD I pI yes address to integer

O pI address to initial integer

with p = m+N and k as given in section 4.2.

7.2 Smoothing

The smoothing algorithm is discussed in section 4.3. Smoothing can be started after the Kalman
filter. The function call is

void MultiKalmanSmo(cY, cT, cSt, mPhi, imPhi, mTV,
mP, mN, mKF, mSco, mKS)

with no return value. Information about the arguments are given below.
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Variable I/O Type NULL Description

cY I I no N , number of rows data matrix
cT I I no n, number of columns data matrix
cSt I I no m, dimension of state vector
mPhi I M no Φ, system matrix associated with T and Z
imPhi I IM yes JΦ, index matrix for time-varying Φ
mTV I M yes data matrix with time-varying values
mP I M no p+ 1 × p workspace matrix
mN I M no p+ 2 × p workspace matrix
mKF I M no data matrix with Kalman filter output
mSmo I M yes m+N ×m+N workspace matrix

O M m+N ×m+Nscore matrix S
mKS I M yes k × n workspace matrix

O M k × n data matrix with smoothing output

with p = m+N , k as given in section 4.3 and S as given in section 5.1.

7.3 Simulation smoothing: weights

The simulation smoothing algorithm is discussed in section 4.4. Simulation smoothing can be
started after the Kalman filter. The function call for calculating the simulation weights is

int iMultiSimSmoWgt(cY, cT, cSt, mPhi, mOmega, imPhi, imOmega, mTV,
mP, mN, mKF,
cSel, ivSel, mC, mWeight);

with return value of type integer (I) and it returns 0 (no error), 1 (Ct is negative definite), 2 (Ct
is singular) or 3 (Ct is NULL). Information about the arguments are given below.

Variable I/O Type NULL Description

cY I I no N , number of rows data matrix
cT I I no n, number of columns data matrix
cSt I I no m, dimension of state vector
mPhi I M no Φ, system matrix associated with T and Z
mOmega I M no Ω, system matrix associated with H and G
imPhi I IM yes JΦ, index matrix for time-varying Φ
imOmega I IM yes JΩ, index matrix for time-varying Ω
mTV I M yes data matrix with time-varying values
mP I M no p+ 1 × p workspace matrix
mN I M no p+ 2 × p workspace matrix
mKF I M no data matrix with Kalman filter output
cSel I I no s, number of required simulations
ivSel I IV no p× 1 vector of diagonal 0/1 elements of Λ
mC I M no s× s workspace matrix
mWeight I M yes k × n workspace matrix

O M k × n data matrix with simulation weights

with p = m+N and k and s as given in section 4.4.
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7.4 Simulation smoothing: draws

The simulation smoothing algorithm is discussed in section 4.4. This function to obtain draws
from the simulation smoother can be started after the Kalman filter and after the function for
the simulation weight matrix. The function call for drawing is

void MultiSimSmoDraw(cY, cT, cSt, mPhi, mOmega, imPhi, imOmega, mTV,
mP, mN, mKF,
cSel, ivSel, mC, mWeight,
mRann, mDraw);

with no return value. Information about the arguments are given below.

Variable I/O Type NULL Description

cY I I no N , number of rows data matrix
cT I I no n, number of columns data matrix
cSt I I no m, dimension of state vector
mPhi I M no Φ, system matrix associated with T and Z
mOmega I M no Ω, system matrix associated with H and G
imPhi I IM yes JΦ, index matrix for time-varying Φ
imOmega I IM yes JΩ, index matrix for time-varying Ω
mTV I M yes data matrix with time-varying values
mP I M no p+ 1 × p workspace matrix
mN I M no p+ 2 × p workspace matrix
mKF I M no data matrix with Kalman filter output
cSel I I no s, number of required simulations
ivSel I IV no p× 1 vector of diagonal 0/1 elements of Λ
mC I M no s× s workspace matrix
mWeight I M no data matrix with simulation weights
mRann I M no s× n data matrix with standard normal deviates
mDraw I M yes p× n+ 1 workspace matrix

O M p× n+ 1 data matrix with simulation draws

with p = m+N and s as given in section 4.4.

Appendices

A Nile data

The Nile data is a series of readings of the annual flow volume of the Nile river at Aswan for 1871
to 1970. This series is originally considered by Cobb (1978) and it is analysed more recently by
Balke (1993). The observations are given below (read row-wise).

1120.0 1160.0 963.00 1210.0 1160.0 1160.0
813.00 1230.0 1370.0 1140.0 995.00 935.00
1110.0 994.00 1020.0 960.00 1180.0 799.00
958.00 1140.0 1100.0 1210.0 1150.0 1250.0
1260.0 1220.0 1030.0 1100.0 774.00 840.00
874.00 694.00 940.00 833.00 701.00 916.00
692.00 1020.0 1050.0 969.00 831.00 726.00
456.00 824.00 702.00 1120.0 1100.0 832.00
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764.00 821.00 768.00 845.00 864.00 862.00
698.00 845.00 744.00 796.00 1040.0 759.00
781.00 865.00 845.00 944.00 984.00 897.00
822.00 1010.0 771.00 676.00 649.00 846.00
812.00 742.00 801.00 1040.0 860.00 874.00
848.00 890.00 744.00 749.00 838.00 1050.0
918.00 986.00 797.00 923.00 975.00 815.00
1020.0 906.00 901.00 1170.0 912.00 746.00
919.00 718.00 714.00 740.00

B Airline data

This is a well-known data set consisting of the number of UK airline passengers in thousands
from January 1949 to December 1960; see Box and Jenkins (1976). The observations are given
below (read row-wise).

112.00 118.00 132.00 129.00 121.00 135.00
148.00 148.00 136.00 119.00 104.00 118.00
115.00 126.00 141.00 135.00 125.00 149.00
170.00 170.00 158.00 133.00 114.00 140.00
145.00 150.00 178.00 163.00 172.00 178.00
199.00 199.00 184.00 162.00 146.00 166.00
171.00 180.00 193.00 181.00 183.00 218.00
230.00 242.00 209.00 191.00 172.00 194.00
196.00 196.00 236.00 235.00 229.00 243.00
264.00 272.00 237.00 211.00 180.00 201.00
204.00 188.00 235.00 227.00 234.00 264.00
302.00 293.00 259.00 229.00 203.00 229.00
242.00 233.00 267.00 269.00 270.00 315.00
364.00 347.00 312.00 274.00 237.00 278.00
284.00 277.00 317.00 313.00 318.00 374.00
413.00 405.00 355.00 306.00 271.00 306.00
315.00 301.00 356.00 348.00 355.00 422.00
465.00 467.00 404.00 347.00 305.00 336.00
340.00 318.00 362.00 348.00 363.00 435.00
491.00 505.00 404.00 359.00 310.00 337.00
360.00 342.00 406.00 396.00 420.00 472.00
548.00 559.00 463.00 407.00 362.00 405.00
417.00 391.00 419.00 461.00 472.00 535.00
622.00 606.00 508.00 461.00 390.00 432.00
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