OPTIMIZING INFORMATION IN THE HERD: GUINEA PIGS, PROFITS
AND WELFARE

DANIEL SGROI

ABSTRACT. Herding arises when an agent’s private information is swamped by public infor-
mation in what Jackson and Kalai (1997) call a recurring game. The agent will fail to reveal
his own information and will follow the actions of his predecessor and, as a result, useful in-
formation is lost, which might have highlighted a better choice for later decision-makers. This
paper evaluates the strategy of forcing a sub-set of agents to make their decision early from
the perspective of a social planner, and a firm with a valuable or valueless product. Promo-
tional activity by firms can be explained as an attempt to overcome the herd externality and
maximize sales.

1. INTRODUCTION

Should a firm with a new product release it to the entire market on the same day or pre-
release to a select set of customers first? Should movie premieres be made available to members
of the press and high profile celebrities or should films simply be released worldwide on the
same day? Should a firm’s product be released on the same day in several markets or released
sequentially in different markets? Is it optimal for every country in the European Community
to conduct separate drug trials or should they pool and have one drug trial? Is it sensible for
the government to slowly release new drug treatments to doctors or should there be a core
release to a select group of doctors first?

All of these questions relate to whether a slow sequential release of information is better than
a discrete simultaneous release in the first instance followed by a slow sequential release there-
after. The term better may relate to consumer welfare (in the case of government planners) or
profitability (in the case of firms). In both cases the approach taken in this paper is to model
the learning process as a potential herding phenomenon. This allows a quick identification of
the crucial trade-off involved between the gains for those late in the sequence who have access
to more information if an initial group of “guinea pigs” is used, and the costs for those within
the group of guinea pigs. More generally, forcing a sub-set of agents to make decisions quickly
is important in any herd context when agents learn by observing each others’ actions. Later
decision-makers in such a model can gain a great deal from early movers, but they are also
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liable to become trapped in an information-damaging herd in which it is impossible to derive
information from agents’ actions, as they are simply copying their predecessors regardless of
their own private information. Forced early movement overcomes this problem by providing
later movers with genuinely informative actions and easily inferable private information. How-
ever, this is clearly damaging for those forced to decide early since they can no longer gain from
observational learning themselves. We therefore have a clear trade-off.

This paper begins in section 2 by developing a herding or informational cascade model based
on the work of Bikhchandani et al (1992) which has been usefully categorized by Jackson and
Kalai (1997) as a recurring game. The paper then moves on in section 3 by developing individual
payoff functions, then a total consumer welfare function. Section 4 then examines the central
trade-off from a social planner’s perspective, finding that the optimal size of this sub-set of
guinea pigs depends on the total number of agents in the sequence and the probability that a
signal points in the right direction. This part of the paper shows that decision-making by a
sequence of pairs is superior to sequential individual decision-making, and might therefore be
an interesting informational justification for marriage! Section 5 considers the problem from
a firm’s perspective. The firm is naturally not interested in maximizing consumer welfare,
but is instead interested in ensuring as many successful sales as possible. The firm can still
use guinea pigs through some form of promotional campaign to raise its sales and the paper
produces various comparative statics to show how knowledge of the number of consumers and
the probability that their private information is correct is joined with the firms’ knowledge of
the true state to provide a clear optimal policy. A firm with a good product, will make more
use of guinea pigs and intervene aggressively, doing so all the more as the number of consumers
in the market increases and the quality of consumers’ private information falls. There are
clear implications for welfare as it is inthe firm’s interest to assist consumers to make the right
choice. With a bad product the firm is indirectly interested in minimizing consumer welfare by
convincing the maximum number to purchase when doing so is not optimal.

The findings in this paper provide at least one way to improve on the consumer welfare
damaging herds that can start in many circumstances. Using the results in this paper it is
possible to look for any potential herd situation in which a herd might move in the wrong
direction and calculate an optimal number of guinea pigs, plus the percentage improvement
over laissez-faire, that an attempt to force early movement could achieve. For example, if we
were dealing with a group of 100 individuals, with private information which is correct % of the
time, it would be optimal to force 22 of these to move early, perhaps through the use of schemes
to provide extra incentives for early movement (such as price reductions, or free gifts), limiting
the number in this scheme to 22 (through randomization, or via prior selection). This would
maximize overall consumer welfare and minimize the chance of an incorrect herd. For a firm
we can now find some number of early and perhaps high profile consumers which would provide
maximum sales. The firm could seek out members of the press or celebrities and provide them
with its product at some reduced rate, and the extra sales certainly justify reducing prices to
these early movers. In this way we can justify various observed practices from a card-holder day
at a department store in which a select number of customers are urged to try out new stock,
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to the use of movie premieres in which celebrities and members of the press gather to pass
judgement on a new film before the general release of the film. Although there are undoubtedly
many reasons for such promotional activity by firms, such practices increase the likelihood of
products achieving success in the marketplace, and work against the herd externality.

2. THE MODEL

This section sets up a version of the model first used in the seminal herd paper by Bikhchan-
dani et al (1992) more generally characterized by Jackson and Kalai (1997) as a recurring game.
Most early herd papers were primarily concerned with herd probabilities and proving that herds
were likely or even certain to occur. The main focus of this paper is rather with payoff functions
and the development of a total consumer welfare function. However, in order to derive such
functions we cannot avoid looking at herd probabilities. We can motivate this in two ways.
Firstly, we will consider the role of a social planner, government or regulatory agency. The
agents might simply be consumers of a product and the social planner might simply wish to
maximize consumer welfare. Later we will consider a firm which has a different aim. The firm
wishes to maximize profit. We proxy this aim by maximizing sales since price is not a variable
we consider, so the firm will attempt to induce as many agents to purchase as possible.

2.1. Preliminaries. Consider a sequence of N € N, ; agents, the ordering of which is exoge-
nous and common knowledge, each deciding whether to adopt/purchase (Y') or not (N) some
product or technology. Each agent observes the actions (Y or N) of his predecessors. The cost
of adoption is C' = %, and results in the gain of V' which has prior probability % of returning 0 or
1. The agents each receive a conditionally independent signal about V' defined as X; € {H, L}
for agent ¢. The signals are informative in the sense that:

PriX;=H|V=1=Pr[X;=L|V=0=pe(051)

Pr[X;=H|V=0=Pr[X;=L|V=1=1-pec(0,05)

We assume that signals are identically distributed and note that the restriction on p suffices to
produce informative but non-fully revealing signals. Define the history up to agent n as the set
of actions of agents 1 to n—1so H,, 1 = {41, As, ..., A;,_1} where A; € {Y, N}. Now define the
information set of agent ¢ as I; = {H;—1,X;}. It will be the case that in certain circumstances
X; will be inferable from A; but this will not always be true. Now define N odd a9 the set of
agents from N indexed by only odd numbers from Ny, and equivalently define N®**"*. Define

also Nodd

as the set of odd numbers in N4, and equivalently define N°¢". Define E [m;] to
be agent i’s ex ante expected payoff (i.e. his expected payoff before his signal draw). Finally
define #X; as the number of signals or actions of type X; drawn or taken up to and including
agent 1.

Now Xy = H < Ay =Y and X3 = L & A; = N. Agent 2 can infer agent 1’s signal,
X1, from his action, A;, and so has an information set I[r = {X1,X»2}. If Xo = H and

Ay =Y = X; = H then agent 2 adopts so Ao =Y. If Xo = H and A1 =N = X; =L or
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FIGURE 1. Schematic Representation of a Herd, V=1

if Xo =L and A; =Y = X; = H agent 2 will have two conflicting signals so we require a
tie-breaking rule. We use a simple coin-flipping rule which is known to all agents:

Condition 1. (Tie-breaking rule) If I; includes an equal weighting of H and L signals then
Pr[A; =Y] =Pr[A; = N] = 1. This rule is common knowledge.

2.2. Cascades. Consider a possible chain of events. The first agent will purchase if X; = H
and reject if X1 = L. The second agent can infer the signal of the first agent from his action.
He will then purchase if Xs = H having observed purchase by the first agent. If he observed
rejection but received the signal Xo = H then he will flip a coin following the tie-breaking rule.
If he receives X5 = L and A; = N then he too will choose As = N. If the first agent purchased
then he would be indifferent and so flip a coin. The third agent is the first to face the possibility
of a herd. If he observed two purchases, so Hy = {Y, Y} then A3 =Y for all X3 since he knows
that X1 = H and the second agent’s signal is also more likely to be H than L, so the weight of
evidence is in favour of purchase regardless of Xs. This initiates a Y cascade: the forth agent
will also adopt as will the fifth, etc. Similarly if the third agent observes that both previous
choices were rejections then he too will reject, initiating a N cascade. This process can be
described in terms of a stylized probability tree, and is done so for the case when V = 1, in
figure 1. We now define an informational cascade generally and in the context of this model.

Definition 1. Informational Cascade (Bikhchandani, Hirshleifer and Welch, 1992).
An informational cascade occurs if an individual’s action does not depend upon his private infor-
mation signal. An individual, having observed the actions of those ahead of him in a sequence,
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who follows the behaviour of the preceding individual, without regard to his own information, is
said to be in a cascade.

A more model-specific definition would be:

Definition 2. Informational Cascades. A'Y cascade is said to occur if A;_ 1 =Y = A; =
Y for all X;. A N cascade is said to occur if A;_ 1 = N = A; = N for all X;.

For the sake of clarity define the initiator of a herd or cascade as the agent whose decision to
go Y or N makes the following agent’s signal irrelevant. The cascade traps the agent who first
faces a deterministic optimal choice regardless of his signal value, and all subsequent agents.
So in the case of Hy = {Y,Y} a Y cascade is initiated by agent 2 and agent 3 finds himself
trapped in the Y cascade. Note that if Hy = {Y, N} or Hy = {N,Y'} then agent 3 will be in
the same position, pre-signal draw, as agent 1. Note also that if agent 3 finds himself trapped
in a cascade so to will agents 4,5,6, ..., V.

Proposition 1. A cascade once started will last forever.

Proof. There exist many proofs of this in the literature. The following is therefore short and
intuitive. If an agent ¢ is in a cascade, then by definition, regardless of his signal he will follow
his predecessor’s action. Therefore his action conveys no information and agent ¢ + 1 can only
draw the same inference from all previous actions as agent i. Agent ¢ + 1’s information set is
therefore made up of exactly the same public information plus one private observation. Since
agent i+ 1’s signal is drawn from the same distribution as agent ¢ and since agent ¢’s action was
no dependent on his signal neither will the action of agent ¢+ 1 be dependent on his own private
signal. By induction, as all agents after agent ¢ + 1 also have draws from the same distribution
they can only draw the same inference from all previous actions as agent ¢. Therefore all agents
after ¢ will simply repeat the action of agent ¢ — 1. I

Consequently, a cascade once started will last forever, even if it is based on an action which
would not be chosen if all the agents’ signals were common knowledge. Finally, the possibility
of convergence to the incorrect outcome might be phrased in terms of a discernible negative
externality as defined by Banerjee (1992).

Definition 3. Herd Externality (Banerjee, 1992). The herd externality is the loss of
the information contained in later agents’ private signals that comes about when agents in a
sequence ignore their own private information and join a herd.

A social planner will wish to minimize the impact of this negative externality on consumer
welfare. In some cases it will also be in the interests of a firm to work against this externality. As
we see later though in some cases a firm will actually use this externality to its own advantage,
when it wishes to sell a low quality product.

2.3. Calculating Herd Probabilities. From the model specifications we can derive the un-
conditional ex ante probabilities of a Y cascade, NV cascade, or no cascade after n agents. Define
Y (n) to be a'Y cascade initiated by agent n and similarly define N (n) for a N cascade and
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No (n) for no cascade by agent n. For example PriY (2)] is smlply the probability that the first
I=

two agents both choose Y. So 1—Pr [Y( )] =Pr[N (n)] = Pr[No(n)] for all n. Starting with 2
agents we have Pr[Y (2) |V =1] = —|—ML &PrlY (2)|V=0=(1-p)? —I—ﬂIQ;pl. There-

fore PrY (2)] = 1—_%“&2 Similarly, we have Pr [N (2)] = % (1 — p+ p?). No cascade by agent 2
will occur with probability 1 — Pr[Y (n)] — Pr[N (n)], therefore Pr[No(2)] = p — p®. Note of
course that this can be alternatively calculated as the occurrence of HL or LH and a coin flip by
agent 2, so Pr[No(n)] = 3p (1 — p)+3 (1 — p) p. Further note that Pr Y (2)] and Pr [V (2)] are
not conditional on V since they are fully symmetric so Pr[N (n)] = 3 (1 —Pr[No(n)]). Now
note that Pr[Y (4)] = Pr[Y (2)] + Pr[No(2)]Pr[Y (2)] and similarly for Pr[N (4)]. Further
Pr[No(4)] = (Pr[No(2)])?. Using this we can easily deduce the general probabilities after an

even number of n agents to be Pr[No(n)] = (Pr[No(2)])" = (p—p?)? for no cascade, and
Pr[Y (n)] = Pr[N (n)] = 1 {1 - Pr[No(n)]} = 3 { (p—p*)2 ] for aY or N cascade. Now

note that as p — 1 cascades tend to start sooner, so more precise signals raise the probability
of histories that lead to the correct cascades where we define correct cascades as a Y cascade
if V.=1or a N cascade if V = 0. As Bikhchandani et al note, the probability of not being
in a cascade falls exponentially with the number of agents, for example for a very noisy signal,
p =3 +¢ with ¢ — 0 we have Pr[No (10)] < 0.1. Now we conclude this part of the analysis by
considering the probability of the correct or incorrect cascade occurring:

Priy(2)|V=1=p+ip(l-p) =iplp+1)
Pr[No(2) |V=1=4p(l—p)+3p(1—p)=p(1—p)

PrN@2)|[V=1=1-p*+5p1-p)=50p-2)(p-1)

After an even number of n agents we have:
Pr[No(n) |V =1] = (Pr[No(2) | V = 1)8 = (p—p?)?
PriY(n)|V=1=Pr[Y(2)|V=1+Pr[Y(2)|V=1Pr[No(2) |V =1]

+Pr[Y (2) |V =1Pr[No(4) |V=1]+..+Pr[Y(2) |V =1Pr|[No(%) |V =1]

SIS

=Pr[Y (2) | V=1 |1+ (p—p*) +..+ (p—p°)

Now using the sum of a geometric series we have:

_ ezl ()2
(2.1) Pr[Y(n)|V=1= i sy
Similarly we can calculate for Pr[N (n) | V = 1]:
—2)(p—1) 1—(p—p? %
(2.2) Pr[N (n) |V = 1] = £=2e=1) lfﬁpfpﬁ)
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Note that from equation 2.1 Pr[Y (n) | V = 1] is increasing in p and n but from equation 2.2
we have that Pr[N (n) | V = 1] is high even for p much higher than 1. Therefore, even when
a great majority of the signals are of type H, a product still faces the prospect of a possible
herd against its purchase. This is worrying for both a social planner and for a firm with a high
quality product. The symmetric case where V = 0 would apply when the product is of low
quality, and the results provide some hope for the manufacturer of such a product, since there
is always the chance of a Y cascade. As we will see, firms and planners can manipulate the
probability of a Y cascade, so they need not remain passive in the face of a potential herd.

3. PAYOFFS AND CONSUMER WELFARE

In this section we move away from standard herding concerns and instead focus on the cal-
culation of individual payoffs for agents along the sequence. These calculations are then used
to derive an expression for total consumer welfare. Evaluating the payoffs to the potential con-
sumers and the total consumer welfare function, represents the first step in finding a consumer
welfare-improving policy for a social planner. We will look at a more active role for the social
planner, in which it can improve on the laissez-faire outcome in the next section. As we see
later, consumer welfare also indirectly plays an important role in finding the optimal policy for
a firm.

3.1. Individual Payoffs. We will begin by looking at the ex ante expected payoff of the first
agent. Note the two conditions prior probabilities are Pr[V = 1] = Pr[V = 0] = 1 and signal
probabilities are Pr[X; = H |V =1]=Pr[X; =L | V = 0] = p. So we have:

(3.1) E [7T1] _ E[7r1|2V:0] 4 E[7r1|2V:1] _ 2p;1 >0

Note also that A; = N = m; = 0 so we need only consider A; = Y when calculating payoffs.
Since p > £ (signals are informative) we have that E [m] > 0. Now consider the second agent:

| PO PR () L Pronl(3)
2

(3.2) E[m] = =21 = E[m]

So we have the interesting result, that F [ro] = E'[m1]. In fact in general we can say that:

Proposition 2. Agent k will have the same ex ante expected payoff as agent k + 1 where
k€ Nodd,

Proof. Consider a sequence of N individuals and let k¥ < N be an odd number. Now consider
an arbitrary agent k and agent k + 1. Agent k will either be in a cascade or not. We will
consider these possibilities in turn. 1. If agent k is in a cascade then agent k 4+ 1 will simply
duplicate agent k’s action and so will obtain the same expected payoff. 2. If agent k is not in
a cascade then all the revealed information from agents 1 to k — 1 must be neutral, i.e. can be
ignored. This is only possible if k is odd, as otherwise the set of information arising from agents
1 to kK — 1 would always be biased towards one choice. Agent k will then decide based upon
his own signal, choosing Ay =Y if X;, = H and A = N if X} = L. The signal of agent k is
therefore perfectly inferable to agent k+ 1. Now we examine the return to agent k + 1. If agent
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k + 1 receives the same signal as agent k, so X1 = Xy then he will choose as agent £ did and
therefore receive the same expected payoff. If agent k receives a different signal, so X1 # Xg,
then he will have received one signal suggesting Y and one suggesting N and will therefore be
perfectly indifferent between the two. Indifference implies the expected return from choosing
either option is the same. Therefore one optimal policy for agent k£ + 1 is always to duplicate
the choice of agent k regardless of his own signal. Since this is always optimal the expected
payoffs of the two agents must be the same. For completeness we should note that as shown
earlier payoffs are the same for agents 1 and 2, and since it has been shown true for arbitrary
agents k and k + 1, where k is odd, it will be generally true by induction for £ < N where k is
an odd number.

It is interesting to note the similarity between this proposition and the role of information
played in Meyer (1991). Meyer shows that in certain circumstances an extra draw from an
informative distribution will not increase the probability of a decision-maker choosing correctly
between two alternatives. She goes on to suggest biasing the second draw in such a way as to
improve the probability of success and applies this to show the optimality of biased promotion
tournaments.

We have the result that E [7,] = E [my41] for n € N°%. This allows us to concentrate on
agent n € N°¥, Now consider what happens by agent n — 1. There are three possibilities:

1. We have a Y cascade, so agent n will go Y.

2. We have a N cascade, so agent n will go V.

3. We have no cascade, so agent n will go Y if X, =Y and will opt for N if X, = L.

This allows the calculation of agent n’s payoff since we know that m, = % if A, =Y and
V=1,and 1, = —% if A, =Y and V = 0, otherwise there will be no payoff. Therefore:

E |7, ‘ ne Nodd| _{Pr[Y(n71)|V=0]+(12p) Pr[No(n—1)|V=0]} + {Pr[Y(nfl)\Vzl]JriPr[No(n71)|V:1]}

This simply evaluates the probability that agent n goes for Y in both states of the world then
weights this by the payoffs of % and —%. Note that if there is no cascade we have to weight the
chance of agent n going Y by the chance of his observing a H signal in each state of the world,
that is (1 — p) if V' =0 and pif V' = 0. This can be simplified to:

ntl
O —11-(p— 2 2
53 B[ e No] = 2t ),
It is also interesting to note that:
n—1
1—(p—p?) 2
Blmy |Y (n)] = =02L 2 piny)

So all payoffs are related to the payoff of the first agent. Similarly calculations for agent
n € Ne" yield:

n

2

_11-(p—p?
(3.4) Elr, | n€ N = 21%%
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3.2. Aggregate Consumer welfare. Define aggregate consumer welfare () as equal to ex ante
expected payoffs summed over all N agents, so 2 =3, m,. Proposition 2 immediately tells
us that since E [7,,] = E [7,,41] for n € N°% we can consider aggregate payoffs to be simply:

[ 2> cnoaa B (n) for N € Never
(3:5) Z = { 2 [Yenoia Em (n)] —m (N) for N € Nodd

Based on equation 3.5 we can now calculate total ex ante expected consumer welfare since:

ntl
ey {Nzwompw ?
(3‘6) de b [Wn] - 4(1-p+p?)
nenNe°
And so we have:
ntl

2(12—131:43192) {N — D nenedd (p —p2) 2 ] for N e Neven

(3.7) Q= N1

3
+
—
—
|
—
3
3
—

2p—1
2(1—pp+p2) {N = Yneneda (p—17) 2 ]
Or alternatively:

n+1

n
2 2\ 92
(3.8) Q=|N= > (-2 - > (p—1)2
nENOdd neNeven
This then provides our benchmark. Any intervention that aims to strictly improve aggregate
consumer welfare will have to raise overall payoffs above the non-intervention level of 2. This
then provides the benchmark for an interventionist social planner.

4. THE SOCIAL PLANNER

Now we consider the role of a consumer welfare-maximizing social planner. We allow our
social planner to force an additional M C N agents to move in the first period. These agents
will join with the first agent to give us a set of M + 1 “guinea pigs”. This has two major effects
on consumer welfare:

1. Those M + 1 who move first will not get access to later information and so will have less
to use to help them make the optimal decision.

2. Those N — (M + 1) who move later will have more information at their disposal and so
should have a better chance of making the correct decision.

We can therefore use the consumer welfare equation from the previous section and make two
adjustments. We can use the sum for N — (M + 1) agents and then add a further M E [m1] to
the total, but first we must adjust the probability of being caught in a cascade to reflect the
extra information made available to later movers. For simplicity we will assume that N € N¢v¢",
though the results in the section above allow us to look at N € N°# in an equivalent way. Now
define Q2 = Q (M, N, p) as the general level of consumer welfare. Since N € N we can use
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the simple form for M = 0 (no intervention) given as:

ntl
(4.1) Q(OaN,P)Zﬁ N — Z (p—p*) 2

neNodd

4.1. Polar Examples. Consider what happens when M = 1 so we force two agents to act
without social learning, rather than just a single agent as in the model in Section 3. We then
get 2 initial moves followed by a sequence of N — 2 agents. The two start-agents will share the
same er ante expected payoff as the first agent in the standard sequence, that is i(Qp —1).
However, the new sequence from the third agent onwards will have access to more noiseless
information; 3 signals instead of 2. Therefore the agent deciding after the start-agents may well
face the prospect of a cascade before drawing his signal.

Consider the payoff of the third agent. He faces three possibilities, a Y cascade, N cascade
or no cascade as before, but the probabilities are slightly different. Consider V' = 0:

Elrs |V=0,M=1]=(1-p)*(-3) +2p(1 —p)* (-3)
Now consider V = 1:
Elrs|V=0,M=1]=p*(3)+2p* (1 -p) ()
Therefore his unconditional payoff is:
(4.2) Elrs | M=1=1@p—-1)(2p— 20> +1)
Now note that in the non-intervention case we have:
(4.3) Elms | M=0=12p-1)(p—p*+1)

Now consider which has the higher value. Let us assume that equation 4.2 has the higher value
than equation 4.3 and see if this is true: i (2p—1) (2p — 2% + 1) > i (2p—1) (p —p?+ 1) =
p —p? > 0 which is clearly true for p € (0,0.5). So the third agent gains slightly from the extra
noiseless information, while the first two agents each receive what they would have anyway
under non-intervention, expected payoffs of i (2p —1). Clearly agent 4 cannot be any worse
off, so we have found an unambiguously better situation, hence Q (1, N,p) > Q (0, N, p).

Now consider M = N —1. In this case all the agents that usually move after the first agent are
instructed to move immediately without scope for learning. The result here requires no analysis,
all will move and gain the same ex ante expected payoff of i(?p —1),s0 Q(N—-1,N,p) =
1N (2p —1). Now since Q(0,N,p) > 7N (2p — 1) this is clearly a worse situation for total
consumer welfare than non-intervention. So we see by example that (0, N,p) is not the
highest consumer welfare achievable, but is also not the lowest. We need to find another
candidate for optimal consumer welfare and therefore the optimal structure for our problem.
This also constitutes a proof that:

Proposition 3. The optimal level of M (number of guinea pigs) will lie strictly between 0 and
N —1.
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Proof. As shown above Q (1, N,p) > Q(0,N,p) and Q2 (0,N,p) > Q(N — 1, N, p) which imme-
diately proves the proposition. i

4.2. The Welfare-Maximizing Structure. So far we have Q(1,N,p) > Q(0,N,p) and
Q0,N,p) > Q(N —1,N,p). The agent moving immediately after the M + 1 agents make
the initial move, agent M + 2, will see various possibilities. Divide the set of size M + 1 into
subsets My and My which are made from those who choose Y and N respectively. Agent
M + 2 faces three mutually exclusive possibilities:

1. My — My > 2 which will create a Y cascade.

2. My — My > 2 which will create a IV cascade.

3. My — My € (—2,2) which produces no cascade.

Part 1 of the Appendix derives the function:

N—M 2z—2
1 M2 M2 B

Q (M, N, p) = 2e=00151) +§(2p_1)(M[+(lﬂ)é ;]Za—p) 2 Zl Z; (pQ,Qpﬂ)s
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FIGURE 3. Optimal M Values, N=50

M2 MA2

M1

p

NeM—1 ) @p- DM+ 2 (1-p) 2 AL (1p)® - (1 -p) M

N (2p—1)( K)]V][J—i-l),}g 2l + E: | (M 1—2)Ta |
2 : =0

We then need to optimize this with respect to M and a partial further calculation is made

in the Appendix.

Despite the complexity of the function, a number of features stand out:

1. There is a unique maximum for any value of p and N assured by the concavity of
Q(M,N,p).

2. The maximum is in the interior of the range of M for all values of p and non-trivial V.

To give some examples figures 2 to 4 show how the total consumer welfare value Q2 (M, N, p)
evolves as M + 1 € N€¥¢" increases, with N and p held fixed. Figure 2 fixes N = 10, figure 3
fixes N = 50 and figure 4 fixes N = 100. Figure 3 provides different optimal values for M for
different values of p. However, as in figure 2 the optimal value of M is never 0 or N, instead it
is given at some interior value. Figure 4 provides a convex shape and a set of interior optima
for M. For N = 10 the optimal value of M is 3 for the five values of p examined. The existence
of a trade-off between the value of guinea pigs and the loss to the guinea pigs’ consumer welfare
because of their failure to learn from others is captured by the convex shape of the function,
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FiGURE 4. Optimal M Values, N=100

which is a general feature, and is clearly visible in figures 3 and 4. Figure 5 summarizes Figures
2,3 and 4 by providing optimal M values for the given values of p and N. It is important to
note the restriction M + 1 € N*v*",

To give some feeling for the results consider one example. For N = 100 and p = %, we have
an optimal value of M = 21. This states that total consumer welfare will be maximized if
we have a structure in which 21 of 100 agents join agent 1 and move immediately. Then the
remaining 78 agents move in sequence. This gives agent 23 access to 23 signals unpolluted by
possible herding, and guarantees that all agents will get full access to at least 23% of all signals.
This provides significantly more consumer welfare than a standard herd when all act in strict
sequence (twice as much) or when there is no social learning so all act independently (over twice
as much).

To give some comparative statics note that as p rises the optimal number of guinea pigs falls.
This is the case since a rising p increases the probability of a good decision and a correct herd
which is good for consumer welfare. The gains from increased guinea pigs are therefore not so
great, while the disadvantage of reducing the information available to them is still present. As
N rises the number of guinea pigs needs to rise, though the proportion falls.
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P 0.51 2/3 3/4 4/5 0.99
N 50 19 13 11 9 3
100 37 21 13 11 5
F1cURE 5. Optimal M Values for Consumer Welfare Given Values of p and N

4.3. A Note about Marriage. Before we move on to consider the firm, we will examine
one alternative structure implied by Proposition 1. The proposition reveals that for k € N°%
payoffs will always be identical for agents k and k + 1, the reasoning revolved around the
valueless nature of agent k’s information to agent k + 1. This immediately tells us that it is at
least weakly better for welfare to have all decisions “made in pairs”.

Remark 1. Welfare is weakly improved by grouping by going from a system of sequential
decision-making with no guinea-pigs to a system where all decision making is done by a sequence
of pairs, where each pair-member must decide without knowledge of their partner’s decision.

Consider a structure in which agents 1 and 2 decide simultaneously, then agents 3 and 4
observe agents 1 and 2, and also decide simultaneously, etc. We have eliminated only the
useless observation of the direct predecessor when that predecessor can be indexed by an odd
number. This will increase the information available to each successive pair in the same way
as increasing the number of guinea pigs, but without the associated cost to the pair. The net
result suggests that simultaneous decisions by pairs is at least as good as a strict sequence of
decision-making. Taken literally this can provide an interesting argument for the informational
gain of splitting the population into pairs via formal marriage or a similar informal link, but
where each individual decides without reference to the decision made by their partners!

Remark 2. In a sequential decision-making system with no guinea pigs, deference to one’s
partner is optimal.

This remark is simply a corollary to proposition 1. Since agent k + 1 € N€*" will be
behaving optimally by copying the decision made by agent k, we have a theory of deference to
one’s partner! On informational grounds one possible optimal policy in a sequential decision-
making world with no guinea pigs would be for all husbands to defer to their wives’ decisions,
or vice versa.

5. THE FIrRM

Now we move away from the objective of consumer welfare maximization and instead consider
the aims of the firm. Consider a single firm with a product it wishes to sell. Abstracting from
profit-maximization, in the context of the current model we will consider the firm’s aim to be
simply to sell as many units as possible. We will first consider the optimal strategy of a firm
which has a “good” product, i.e. for which V' =1 and then consider a firm which has a “bad”
product, i.e. for which V' = 0. Then we consider a firm that is uninformed about the value of
V. We then compare the optimal actions of a firm with the optimal actions of a social planner.
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5.1. Promoting a Good Product. Assume that V = 1 so the decision to purchase is the
right one. Unfortunately the firm cannot convince all consumers that this is the case. However,
the firm can manipulate the structure of the herd in much the same way as the social planner
through the use of guinea pigs. In this case we might imagine the firm approaching a sub-set of
all consumers and offering some incentive to make a quick decision. This can come in a variety
of forms. The firm might send time-limited money-off coupons to certain potential consumers,
or offer free products to high profile consumers or members of the press who agree to advertize
their experience through writing a review. Perhaps the best example is that of a movie premiere
full of high profile celebrities and members of the press whose opinion will be sought.

Define the number of units sold as Qn (M + 1) = #Yx (M + 1) which is a function of M +1
for a population of agents of size N and simply reads the number of Y decisions made by a
population of N agents when there are an additional M guinea pigs chosen to decide with the
first agent. In terms of the model the firm’s objective is clearly to maximize the number of
units sold. In order to do this the firm faces an important trade-off.

1. It wishes to maximize the probability of a Y cascade by choice of M, since this will raise
the number of purchases by those outside the initial decision group. For any given choice of M
there will only be a remainder population outside the group of guinea pigs of size N — M — 1,
so the population which learns is of size N — M — 1. Therefore the firm is interested in ensuring
that this remainder population opts for a Y cascade, so intuitively it is interested in maximizing
(N-M—-1)Pr[Y (M+1)|V =1]. AY cascade will be initiated by the group of M +1 guinea
pigs if Qaryr1 > % + 1, a N cascade will be initiated if Qa1 < % — 1 or alternatively
there will be no net public information and no cascade will occur if Qpr+q1 = % Having
noted this it is easy to see that the probability of a Y cascade being initiated by given number
of M + 1 guinea pigs will be Pr Q41 > % +1|V=1].

2. It also wishes to sell its product to as many of the guinea pigs as possible. The sales to
the first M + 1 is very simply defined as p (M + 1) since there will be no learning within this
group.

Furthermore, the firm also knows that even if a Y cascade is not initiated by the initial group
of guinea pigs later agents may still initiate a Y cascade.

The second part of the Appendix reduces the firm’s problem to:

M-—1
2
M+1—2a 1—p)*
o1 me PO+ 1)+ (N = M=) (M+ DY S+

=0
M- —M-1
Mz 1 Mo1—a(1_p) (1—p)M+1 (p+1) N- M1 (Nfo%) 1*(p7p2)n 2 )

—Z(1_ I+ (11— —x +1
1—(M+1)! )k PIEygs T ey o ey

x=0 n=2

Differentiating this requires the use of the digamma and hypergeometric distributions and
produces a fairly complex result. However, some comparative statics should provide some
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intuition for the result. Figure 6 gives the optimal choice of M for various values of p and NNV,
and provides an interesting comparison with figure 5.

D 0.6 2/3 3/4 4/5
N 50 23 19 13 11
100 37 27 17 15
FIGURE 6. Optimal M Values for the Firm when V =1 for Given Values of p and N

Figure 7 gives the expected number of units sold for various different choices of M by the
firm for a market of size N = 100 for different values of p.

M 9 29 49 69 89
0.51 41 48 51 51 51
p 2/3 77 87 83 77 70

4/5 95 94 90 86 82
F1cURE 7. Expected Units Sold for Different Values of M, N = 100

Figure 8 holds p constant at 2/3 and varies the size of the market, again looking at the
impact on the expected number of units sold (with percentage of market size in brackets) of a
change in M.

M 9 29 49 69 89
100 77 (77) 87 (87) 83 (83) 77 (77) 70 (70)
N 150 117 (78) 135 (90) 132 (88) 126 (84) 120 (80)
250 195 (78) 230 (92) 231 (92) 226 (90) 220 (88)
FI1GURE 8. Expected Units Sold for Different Values of M, p = %

Finally, figure 9 considers the percentage of the market which purchases the product when
D= % and we vary N and the ration of M/N.

M/N 9%  25% 49% T75% 91%
100 7% 87% 83% 5% 69%
N 150 83% 89% 83% 75% 69%
250 91% 91% 83% T75% T0%
FIGURE 9. Success Rate for Different Percentages of the Market Forced to Decide Early, p = %

Analyzing figures 6 to 9 reveals a number of interesting comparative statics. Firstly the
impact of raising M on total number of units purchased is non-monotonic. So we do not
expect corner-solutions. Secondly, the impact of M is very dependent on the value of N and
p. Thirdly, optimal M is rising in N but falling in p. Finally, switching to percentages reduces
the importance of NV but does not eliminate it, so the solution cannot be expressed as a fixed
percentage of the market for a given p. Some casual observations would add that a figure of
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around 25% of the market for p = % whilst not optimal seems reasonable for an N between
100 and 250, though it is a little high for N approaching 250. So the trade-off gives us a value
of M which is nicely in the interior, and not too high a level for a reasonable value of p. As
for the impact of N and p we can reason as follows. As p rises the chance of a Y cascade
without resort to guinea pigs rises and this seems sufficient to outweigh the similarly beneficial
fall in the number of guinea pigs who do not purchase from the firm. Therefore, a rising p value
indicates that the number of guinea pigs should be reduced, holding N constant. A rising N
value indicates that the number of guinea pigs should rise, though not as a percentage of NNV.
So the firm should raise the absolute number but reduce the percentage of the market acting as
guinea pigs. This seems sensible given that market size is decreasingly important for learning
in a herding model, since once a herd has started it will not stop, regardless of the number of
agents remaining in the sequence.

5.2. Promoting a Bad Product. Now we consider the case when V = 0. Part three of the
Appendix shows that the firm’s problem has now changed to become:
M

(1—p)MHepe

=0
A — n—M-1
& M (g e (1 | D)D) N (v-M-32) 1<pp2)T>
—x(1_ Z+ xT(1__ -z _ _
L= (M + 1)' Z £ x!fﬂf—i—f—m)! £ £ 2p 1—(p—p?)
=0 n=2

Now we carry out some of the comparative statics from the previous subsection with the only
difference being the move from the V = 1 state to the V = 0 state. Figure 10 repeats the
findings of figure 6 for the new state. Note the collapse in the value of M that would be
selected by the firm as we move from state V' =1 to V = 0. The firm has to carefully balance
the desire to initiate a Y cascade by manipulating the number of guinea pigs, by the need to
avoid too much information being revealed and a NN cascade being initiated.

D 0.6 2/3 3/4 4/5
N 50 17 13 9 7
100 27 19 11 9
FIGURE 10. Optimal M Values for the Firm when V = 0 for Given Values of p and N

Figure 11, much like figure 7, gives the expected number of units sold for various different
choices of M by the firm for a market of size NV = 100 for different values of p. The figures for
optimal M when p = 0.51 are not surprisingly very similar, but moving to a higher figure for
p yields very different results with far fewer units being sold especially for higher values of M
supporting the findings in figure 10.
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M 9 29 49 69 89
0.51 41 48 50 50 49
p 2/3 T4 77 66 53 40

4/5 89 76 60 44 28
FIGURE 11. Expected Units Sold for Different Values of M, N = 100

Figure 12 carries out the same process as figure 8 but for V' = 0, holding p constant at 2/3
and varying the size of the market, looking at the impact on the expected number of units
sold (with percentage of market size in brackets) of a change in M. Finally, figure 13 mirrors
figure 8 by evaluating the percentage of the market which purchases the product when p = %
for various values of N and M/N.

M 9 29 49 69 89
100 74 (74) 77 (77) 66 (66) 53 (53) 40 (40)
N 150 113 (75) 125 (83) 116 (77) 103 (69) 90 (60)
250 192 (77) 220 (88) 215 (86) 203 (86) 190 (76)
FiGURE 12. Expected Units Sold for Different Values of M, p = %

M/N 9%  25% 49% T5% 91%
100 74% 7% 66% 53% 40%
N 150 80% 81% 67% 49% 39%

250 88% 83% 67% 50% 39%

FIGURE 13. Success Rate for Different Percentages of the Market Forced to Decide Early,
2

P=3

5.3. A Note about Welfare. The firm’s desire to maximize the number of units sold when
the state is V' = 1 is intuitively consumer welfare maximizing, since consumers would wish
to purchase given V' = 1. Therefore the firm’s problem is effectively identical to the problem
maxys Q (M, N,p |V =1). However, if we consider V' = 0 it should be immediately obvious
that the firm will not maximize consumer welfare. In fact the firm is interested in maximizing
the probability of an incorrect herd by choice of M and so is interested in minimizing consumer
welfare. To summarize:

Agent Social Planner Firm, V =1 Firm, V =0
Optimal Policy Maximise €2 Maximise 2 Minimise {2
FIGURE 14. Consumer Welfare

5.4. A Note about Revelation. If a social planner has a reasonable knowledge of p and of
N it might be possible to deduce whether the firm is promoting a good product (V =1) or a
bad product (V' = 0) based on the firm’s choice of M. In fact a consumer with a very vague
knowledge of p may be able to isolate the firm’s own perceptions of its product by its choice of
M. This would have a reinforcing effect on the policy of a firm when V' = 1 helping to ensure
success for the product, and equivalently reduce the success of a product when V = 0. For
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example, if a consumer feels very uncertain about the quality of his signal, considering it to
range between 0.4 and 0.6 and knows the market is of size 100, and he observes an impressive
promotion campaign targeting about 40% of the market he might deduce that the firm was
selecting the optimal policy given V' = 1. Of course, this might convince a firm in the state
V' = 0 to increase its efforts and raise M to provide a misleading signal. In fact since it is
generally true that a firm will wish to opt for a much higher M when V' = 1, a high value
of M is suggestive of V' = 1. If we follow this avenue of thought we would need to consider
ways in which a firm in state V' = 1 can differentiate itself from a firm in the state V = 0
providing some cost function for raising M that is lower if V' = 1 and solving the firm’s problem
given a set of incentive compatibility and individual rationality constraints. This returns us to
more traditional signaling models which might work in combination with herding to provide an
interesting extension to this paper. One way of completely removing this concern is to assume
that only the firm knows the value of N. This makes any backward inference from M to V'
impossible, and is in fact quite a reasonable assumption in most markets.

APPENDIX

1. The Optimal Choice of M by a Social Planner. Note that when V = 1, we have a
probability of a Y cascade being introduced by our M + 1 agents of:

, M+ MA1)! M+1)! [41—
pN[+1+(+tlpA[ (1_ ) é\ﬁ%pM 1( ) + . _'_ﬁﬂ_tw%pzuﬂ w(l_p)w
Where z is the highest whole number less than 2=L. We can simplify this to:
M—1
2
M+1)! T4+1—
Pr[My — My 22|V =1= > im0 -p)*
=0
For V' = 0 by a similar calculation we have:
M-1
2
MA1)! MA+1—
Pr[My — My >2|V =01= Y G (1-p)M =" p*
=0
Which yields the unconditional probability:
M—1
2
63 PriMy - My>2=4 3 i P 0= 1)
=0

Now for My = My € (—2,2) which results in no cascade we have My = My in the case when
M +1 e N**** We will from now on concentrate on this case for simplicity. So we have:

M2 M42

(5.4) Pr[My = My] = =L 5757 (1 —p)

i 2P

(%)
We would need Xps42 =Y to induce our M +2nd agent to choose Y after observing My = My,
which will happen with probability p if V' = 1 and probability (1 —p) if V. = 0 and yield a
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1

payoff of % or —3 respectively. Therefore we have a payoff under the no cascade assumption of:

_ | M+2 M2
(5.5) Emaya | My = My = 2271 {[((Jﬂ-rll))']gp SR }
2

!

Now we add in the probability of our agent being caught in a herd on Y, to yield an unconditional
expected payoff:

M2 M+t2

M—1
2
2p—1)(M+1)! 2 1— 2 Z (]VI+1)!pM+1_I(1*p)1*(1*p)M+1_1p2
(5:6) Elmasa] =1 e [()A—§+l>']g . i [ (M+1—z)l! |
2 ) =0

For example, in the M = 1 case, equation 5.6 givesus E [r3 | M = 1] = 1 (2p — 1) (1+2p—2p?)
just as in equation 4.2. The total consumer welfare expression is:

Q(M,N,p) =1 (2p — 1) (M + 1) + {E [Taryo] + E [Tar13] + .. + E [7n]}

Which we simply need to express fully in terms of M and then optimize with respect to M. We
need to note the relationship between E [mpr 0] and E [myry4] for ¢ € {3,4, ..., N}. First note
that from proposition 2. Therefore we have:

N—M
2
QM,N,p)=32p—1)(M+1)+2 > E[mpa
i=1
Comparing agent M +4 to agent M + 2 we see that agent M + 4 basically gets the same payoff
but faces a slightly higher chance of being in a Y cascade which is good when V' = 1 and bad
when V' = 0. This extra probability is basically just the chance that no cascade was initiated
before agent M + 2, but that agent M +2 and agent M + 3 both went for action Y. This occurs
with probability Pr[No | M + 2] {% P+ 1p(1—p)] +3 [(1 —p)?+ip1- p)} } and the net
gain is simply i (2p — 1). So we simply get:

Mt2 M2
01 Aep-n(MaDp 2 (1-p) 2
E[rymya) = Bmaryo] + B4 [(MH),}?
)

For agent M 46 we have a similar calculation except that now we need no cascade before agent
M+ 4:
M2 M2

2 2Dy 2 (1-p) 2

[T

2
Elmarve] = Emarial + (p f“)

And so on, so in general for z > 1:
M2 M+2

22—2 1
7 g@p-)(M+L)lp 2 (1-p) 2

(DT

2__
Emary2:] = Emari2. 2] + (p 2p+1>
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Clearly we have a nested structure and can therefore resolve this as follows:
MH2 M2

)2] F@p-D(M+1)p 2 (1-p) 2

T

2 2 __
Emarie] = Emari2] + [p FE + (p i

And in general:

) M+2 Mo 272
7Cp-D)(M+1)lp 2 (1-p) 2 2_ 8
(5.7) E[mar2:] = Emprso] +4 [(J\JJrl),]? > (p72p+1>
2 : s=1
So for total consumer welfare we have:
N-M
2
(5.8) Q (M, N, p) = 2L o > Elmaia]
z=1
. M2 My MM 222
2p—1)(M+1 5@p-D)(M+1)lp 2 (1-p) 2 2_ s
= B [marso] (N = M — 1) + 22000 4 2 M11y),” > Z(L;ﬂ)
[( 2 )} z=1 s=1
We can now insert the expression for F [mpry2] to yield:
1 M2 M+2 % %
_ @p-D)(M+1) |, 3Cp-D)MADp 2 (1-p) 2 2—pt1)®
Q(M,N,p) = 4 + Mi1y,2 Z ( 2 )
[( 2 )] z=1 s=1
M+2 M2 % , e
LN-Mo1 ) @Ml 2 (1-p) 2 Z (M+1)[pM =2 (1—p)*—(1—p)M 11 *p2]
4 [(MH),}? (M+1-x)la!
2 ' x=0

Now we differentiate with respect to M using a convenient set of abbreviations:

A=Li(N-M+2)
B = (ML)

C

1P +p+1)

A(p472p3 +p271) —4CA —p24-2p—34p*—2p°

D=- (p2—p—1)*

M2 _zv12+2
E=2p-1)(M+1Dlp 2 (1-p)
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20 (M~+2)~+In(p)+In(1—p)— 2@(M+3)

204 C— —p 3 fgp +§

1 —M—
Q (M N,p) P +% <2D+N2 M—1 . 2(p —

M-1

2

)

»th—l

(M4+1—x)!x! 4 (M+1—z)!!

=0
Where W (-) is the digamma function. This expression can then be set equal to zero to yield an
implicit function for the optimal value of M given p and N. Furthermore Qasar (M, N,p) <0
across the whole range of p and N implying that Q (M, N, p) is concave, which is sufficient to
provide a unique maximum.

2. The Firm’s Problem when V=1. Expression 5.1 is based on three parts. The first part
is simply p (M + 1), the number of units purchased within the group of guinea pigs, and is

simply the probability of a high signal given V' = 1 multiplied by the size of the initial group.

M-1
The second part is more complex (N — M — 1) (M + 1)!>, % %M This is the size

of the remaining population of agents, N — M — 1, multiplied by the probability of a Y cascade
being induced by the initial group, which is:

M1
3
1 M+1l—za 1—p)®
PriQuu>R+1|V=1=M+1)) %MH%
=0

The derivation of the final part of expression 5.1 incorporates the possibility that the initial
group failed to initiate a Y cascade. Despite this there is still a good chance of a Y cascade
being initiated by later agents. Start with a signal which is on aggregate neutral, being revealed
by the guinea pigs, which occurs with probability:

M—1
2
M+1—z 1—p)® Z(1— M+41—z
Pr(Qusr = |V =1]=1-(M+1) Z £ (m!szf—tf—(m)!p)
x=0

Which is simply one minus the combined probability of a Y cascade and a N cascade. Now
consider the actions of the decisions made by the post-guinea pig agents. If n agents make
decisions and initiate a Y cascade this must involve 3 (n — 2) agents choosing Y and § (n — 2)
agents choosing N with a crucial 2 agents tipping the balance in favour of a Y cascade. So of
the n we have 3 5 (n —2) + 2 agents deciding to purchase. Now We have only a population of
size N — M — 1 — n remaining. So we have a total of N — M — n who purchase in the event
of a Y cascade being initiated by agent n. For example, if n = 2 then the Y cascade failed
to be initiated by the initial group of guinea pigs, but the M + 2nd agent and the M + 3rd
agent both decide to purchase initiating a Y~ cascade which still results in the entire N — M —1

purchasing. If n = 4, then from the first 4 after the initial group of M + 1, 3 will decide to

2
(M+1)1(pMH1=2) (1—p)” —(1—p) M T1=")p) | N-M-1 0 (M+1)!(pM+1=2) (1—p)” —(1—p) M T =7)p2)
= 5D
x=0
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purchase and 1 will decide otherwise, resulting in N — M — 2 units being purchased. This all
has to be multiplied by the probability of no cascade being initiated by the group of guinea
pigs and the probability of a Y cascade being initiated by the group of n immediately following
the guinea pig, which is therefore:

M-1
S (p+1) 1=(p 192)717];[71 e (1) e (1 M
+1) 1= (= A-prpt(op) T T
Z (N - M — %) £ p2 T—(p—p2) 1- (M + 1)' Z E x!?ﬂf—&-f—m)! £
n=2 =0

Combining these three parts yields a function giving the total number of units sold by the firm
as a function of p, N and M. Of these we allow the firm to vary only M making the final
problem to maximize expression 5.1 by choice of M.

3. The Firm’s Problem when V=0. Expression 5.2 is also based on three parts. The
first part is now (1 —p) (M + 1), since the probability of a high signal given V' = 0 has

changed to be 1 — p. The second part has also slightly changed to now be: (N — M —

M-1 Mil-z.
nM+10y,2 %. This is the size of the remaining population of agents, N —

M — 1, multiplied by the new probability of a Y cascade being induced, now that V' = 0, which
is:

M-1
M1 - (1—p)MHiepe
PriQu 2 M+ 1|V =0]=(M+1)! Y Sh—F
=0
The derivation of the final part of the expression is much as in the case when V' = 1 except we
now use the probability that a Y cascade occurs given V' = 0. Note that the aggregate neutral

signal being revealed by the guinea pigs occurs with the same probability as before, so:

M—-1
2
M+1—=x 1— x xi1_ \M+l-x
Pe Qoo = 542 |V =0 =1 () 3
=0

The population size is also the same, at N — M — 5. However, the new Y cascade probability
changes the final term to:

M—1
N-—M-1 1) 17(p7p2)n—lgf—1 2 M=z (1_p) (1 )M+1—z
Z (N—M—3) =L =0 1—(M+1)! Z E x!f]VIJrffw)! E
n=2 =0

Combining these three parts once again yields the function which the firm will maximize by
choice of M.
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