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Abstract

We apply GMM techniques to the estimation and testing of a wage equation using
data from the British Household Panel Survey. We cannot reject the strict exogene-
ity of size, union and industry with respect to the time varying idiosyncratic shock.
We find compelling evidence of correlation between the unobserved time invariant
individual effect, n,, and size and industry. However, there is no evidence of correla-
tion between 7; and union. None of our diagnostic tests’ suggest a strong correlation
between schooling and 7,. In fact, OLS levels estimates of the schooling coefficient
are downward biased because of inconsistency in other estimates.
JEL classification: C23; C52; J31

Keywords: Panel data; Specification testing; GMM; Wage equations; Wage dif-
ferentials.



1 Introduction

The estimation of wage differentials has always been a matter of great interest for
economists. For example, we have tried to estimate the effects on wages of an addi-
tional year of schooling', of union status?, of industry affiliation®, and of employer

4 among many other things. There have always been worries in this literature

size
that the omission of individual characteristics correlated with the variables of in-
terest and wages may bias the cross-sectional estimates obtained by, for example,
ordinary least squares (OLS). Researchers have attempted a different range of econo-
metric techniques to deal with this problem, from relying on panel data in order to
exploit variation over time within cross-sectional units® using so called fixed-effect
transformations, to the use of quasi-natural experiments that exploit cross-sectional
variation in the variable of interest that is uncorrelated with the omitted variables®.

This paper is related to the panel data literature that uses transformations of
the data to control for omitted individual characteristics. Although the fixed-effect
transformation solves the problem posed by the omission of time invariant charac-
teristics the solution may come at some costs. First, measurement error issues, that
tend to be negligible when only information in levels is used, are exacerbated by
fixed-effect transformations severely biasing the estimated coefficients of the time
varying characteristics of interest towards zero. Second, by transforming the data
to control for omitted individual characteristics, we cannot identify the coefficients
for time invariant characteristics (e.g., schooling). The solution for both problems
has been to use instrumental variables techniques, relying on set a of internal instru-
ments, to obtain consistent estimates of the parameters of interest’. Unfortunately,
the conditions under which these instruments are valid are often neither clear nor

thoroughly tested.

IFor example, Mincer (1974), Grilliches (1977), Chowdhury and Nickell (1985), and Angrist
and Krueger (1991).

2For example, Duncan and Leigh (1980), Freeman (1984), Chowdhury and Nickell (1985),
Robinson (1989), and Jakubson (1991).

3For example, Murphy and Topel (1987), Krueger and Summers (1988), Keane (1993), and
Goux and Maurin (1999).

4For example, Brown and Meadoff (1989).

For example, Chowdhury and Nickell (1985), Murphy and Topel (1987), Krueger and Summers
(1988), Brown and Meadoff (1989), Jakubson (1991), Hughes (1998) and Goux and Maurin (1999).

For example, Angrist and Krueger (1991).

"For example, Nickell and Chowdhury (1985), Cornwell and Rupert (1988), Murphy and Topel
(1987), and Goux and Marin (1999).



In order to deal with these issues we use a family of generalized method of
moments (GMM) estimators for panel data, with a large cross-sectional dimension
and fixed (or short) time-series dimension, that have been proposed by Arellano and
Bond (1991) and Arellano and Bover (1995). These estimators have been widely
applied to company data. They are not only suitable to deal with omitted time
invariant characteristics and measurement error, but also with the fact that some of
the time varying variables of interest may only be predetermined with respect to the
time varying error component. This problem has received relatively little attention
in the estimation of wage equations®,”. This despite the fact that, in the absence of
strict exogeneity and with the typically short length of available panels, estimators
such as random-effects, within-groups or OLS in first-differences are inconsistent.

It is worth pointing out at this stage that this paper is not concerned with
the performance of the many different estimators that have been proposed in the
literature to deal with some or all of the problems we have pointed out here (e.g.,
Cornwell and Rupert (1988) or Ziliak (1997)). The purpose of the paper is to present
a framework where the conditions under which different estimators are consistent
and/or can increase efficiency are clear. Moreover, we like to stress that many of
these conditions are testable so, in principle, it may be reasonable to test rather
than assume these conditions as we often do when we estimate wage differentials
using panel data.

The outlay for the rest of the paper is the following. Section 2 is divided in two.
First, in 2.1, we present different scenarios for the specification of the wage equa-
tion and highlight the conditions under which different estimators are consistent.
Second, in 2.2, we define the GMM estimators of Arellano and Bond (1991) and
Arellano and Bover (1995) and stress a battery of specification tests that are avail-
able in this context. Section 3 applies GMM estimation techniques and specification
tests to the estimation of a wage equation using the eight available waves from the

British Household Panel Survey (BHPS). Section 4 discusses the results further and

8The exception has been the seminal work from Chamberlain (1982, 1984), and the papers
from Angrist and Newey (1991) and Jakubson (1991) that followed, where the appropiateness of
the fixed-effects model is investigated by testing the overidentifying restrictions it places on the
reduced form.

9In the area where people have been most concerned about this problem is in the estimation
of rational expectations models using either time-series or panel data. See, for example, in the
time-series literature Hayashi and Sims (1983) and in the panel data literature the paper by Keane
and Runkle (1992) and comments following this paper.
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concludes.

2 Model specification and method of estimation
2.1 Model specification

Consider the following wage equation

Wit = ﬁ'xz-t—l—’y'fi—{—uit, tzl,...,T, izl,...,N, (1)

Ui = 1;+ AN+ v

where wy is log hourly wage, x;; is a k x 1 vector of time varying explanatory
variables that will typically include experience, experience squared, union status,
industry affiliation, establishment size, marital status, occupation and location, and
fi is a g x 1 vector of time invariant explanatory variables that will typically include
years of schooling, gender and ethnic background. The number of periods T is fixed
and the number of individuals N is large.

The disturbances have a two-way error component structure, where 7, is an
unobservable (for the econometrician) individual effect and A; is a time specific
effect. The 7, can be interpreted as a time invariant worker characteristic (e.g.,
school quality or ‘look’) that is observable for the employer, equally rewarded in
all jobs but unobservable for the econometrician (i.e., a variable omitted from the
wage equation). Furthermore, we assume that the observations are independently
distributed over the cross-section and that, E(n,) =0, E(vy) = 0, E(vyn,;) = 0 for
i=1,..,Nandt=1,...,T, and E(vyv;) =0 fori=1,..., N and for any ¢ different
than s. Notice that since T' is fixed and there is independence in the cross-sectional
dimension for the v;s we can control for the time-specific effects by including year
dummies in the regression function.

The purpose of this section is to analyze which are the appropriate estimators
for # and v under different sets of assumptions regarding the stochastic behavior of
ugy, i and f;. First, consider the case where the x; and f; are strictly exogenous

with respect to v,

E(i/zi, .;xir, fi,n;, ) =0, (2)



there is mean independence of 1, given w;1, ..., x;7, fi, and A,

E(n;/i, s zir, fiy M) =0, (3)

and homoskedasticity across both individuals and time (i.e., F(v%) = o2 and

E(n?) = 02). Under these conditions, the standard generalized least squares (GLS)
estimator proposed by Balestra and Nerlove (1966) will provide consistent and effi-
cient estimates for 4 and v'°.

What happens with GLS estimates of (1) when either (2) or (3) or both do
not hold? Let me start by considering the implications of the assumption of strict
exogeneity of time varying variables with respect to the time varying idiosyncratic
shock. If that condition were to hold it will rule out both feedback effects from
the shocks, v, to the ;s and measurement error in the x;s. There are reason-
able scenarios where the absence of feedback seems unlikely. Consider two possible
examples. First, suppose that the firm where individual ¢ is working has lost an
important client in period ¢ this will affect i's earnings at ¢t and may trigger a job
change (and hence industry, union status, etc.) at ¢+ s where s > 1. Second,
suppose that an individual ¢ is affected by some illness in period ¢, this illness will
affect ¢'s earnings at ¢ and even if i makes a full recovery by ¢t + 1'! he/she may
change jobs at some point in the future, say, because he/she may have lost out on
a promotion opportunity to another worker.

In the absence of measurement error and assuming that the z;; are only prede-

termined with respect to v,

E(vi/xia, ...z, fi,n;, ) =0, (4)

the GLS estimation of the model (1), (4) and (3) is inconsistent when the time
dimension is fixed. The reason for this is the following, GLS is equivalent to running
OLS to a transformed model where the transformation for z;, say, is z;; = z; — 0%;
with § =1 — av/m, 0<fO<1l,andm; =T ZL zy. The inconsistency

is due to the asymptotic correlation between (z; — 07;) and (v;; — 60;). Though x;

10OLS is under these assumptions consistent but inefficient because of the existence of autocor-
relation.

1 Obviously this person might not make a full recovery by ¢ + 1 which will imply that the static
model is implausible and some sort of persistence should be introduced (e.g., the vy can be an
AR(1) process if the effect decline exponentially but it never quite disappears or a MA(1) process
if the effect has a short finite memory). Fortunately, this is a testable implication.
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and v are uncorrelated, their respective individual means are correlated with each
other, with v; and with x;, and the sum of those three covariances does not vanish
as IV tends to infinity. A possible solution for estimating consistent parameters for
the model defined by (1), (3), and (4) is to ignore 1, and to estimate the model in
levels by simply applying OLS'2,'3. Clearly, if there are in fact individual effects,
there is going to be autocorrelation so a consistent estimate of the covariance matrix
is required in order to make statical inference about the parameters of interest.

In a typical measurement error framework with uncorrelated measurement errors

and with the ‘true’ x;; strictly exogenous with respect to v,
E(Vit/Ti1, ooy Tit—15 Titg 15 s Ty fiy M Ae) = 0. (5)

Now, both GLS and OLS produce inconsistent estimates of the parameters of inter-
est for the model defined by (1), (3) and (5). However, provided that the ‘true’ ;s
are serially correlated, an instrumental variable estimator can provide consistent esti-
mates for the parameters of interest by exploiting the fact that x;, ..., Zj_1, Tia1, .oy Tir
are uncorrelated to v. If the ‘true’ x;; are only predetermined with respect to vy,
the potential set of instruments available is reduced to x;1, ..., T;_1.

What happens if the assumption of mean independence of the individual effects

with respect to, at least, some of the x;; and the f; does not hold? This is to say,

Em;/xi1, ....xir, fi, ) # 0. (6)

In this case, both GLS and OLS levels estimators of the model (1), (2) and (6)
are inconsistent. Under strict exogeneity of the z;; with respect to the v;;, OLS
regression of a transformed model that sweeps out the individual effect 7, (e.g.,
first-differences, deviations around individual means or orthogonal deviations) will
allow us to obtain a consistent estimate of 3. Moreover, provided that either the
fi are uncorrelated with 7, or that there are enough instruments for those f; that
are correlated with the individual effect, v can also be identified (see, Hausman and
Taylor (1981), Amemiya and MaCurdy (1986), Breusch, Mizon, and Schmidt (1989)
and, Arellano and Bover (1995)). This may allow us to identify the coeflicient of non

120f course, when 6 = 0 the GLS estimate reduces to OLS levels.

131f lagged dependent variables are included in model (1), OLS will produce inconsistent pa-
rameter estimates (see, Hsiao (1986)). Instrumental variables will produce consistent parameter
estimates provided that we can find instruments that are uncorrelated with n, that can be used to
instrument the lagged dependent variables.



time varying aspects (e.g., schooling) and the linear effects of time varying aspects
which increment identically with time (e.g., experience).

It is worth noticing in this context that, even when all z;; and f; are suspected
of being correlated with the individual effect, there may be instruments to identify
the coefficient of time invariant variables. Bhargava and Sargan (1983) and Breusch,
Mizon and Schmidt (1989) exploit the instruments that arise if the correlation be-
tween x;; and ), is assumed constant'*. A (stronger) conditional expectation version

of this assumption yields, for example!?,
E(n;/ Az, ..., Axip, M) = 0; (7)

provided that the Az;,, ..., Ax;r are correlated with the f;, consistent estimates of
~ can also be obtained.

In practice, however, finding internal instruments that are both uncorrelated
with the unobserved individual effect and correlated with the observed f; may be
difficult. As Chowdhury and Nickell (1985) point out, in relation to their attempts
to instrument the schooling variable: “In all our models where the instruments pass
the “exogeneity” test, the coefficient on schooling is weak and poorly determined
... Basically, we require better valid instruments than appear to be available within
our data set in order to pin down the schooling effect with any precision” (p. 62).

However, the identification of the coefficients of time invariant variables and
the linear effects of time varying aspects which increment identically with time is
not the only rational for the use of the additional moment conditions implied by
(7). Even if we were only interested in identifying the effect on wages of time
varying variables, the use of the additional level moment conditions may increase
the efficiency with which time varying coefficients are estimated, especially in short
panels (see, Arellano (1993) and Blundell and Bond (1998)).

Although the fixed-effect transformation solves the problem posed by the unob-
servability of n; for the estimation of the coefficients of time varying characteristics,

the solution comes at some cost. Measurement error issues that may have been

1 As noted in Arellano and Bover (1995).
15Breush, Mizon and Pagan (1989) use

E(n;/xi — T, ...,xiT — T;) = 0.



otherwise negligible for estimation in levels are exacerbated by fixed-effect transfor-
mations, severely biasing the estimates of 8 towards zero'®. Moreover, even in the
absence of measurement error, if the x;; are only predetermined with respect to the
v;s (see condition (4)) after applying any fixed-effect transformation to the data,
OLS estimation of 3 is inconsistent. For example, an OLS estimation of a model in

first-differences is inconsistent!” because

E(vig — vy 1/zi) # 0.

Griliches and Hausman (1986) note that an instrumental variables estimator
can be used to obtain consistent estimates of 3. For example, in a measurement
error framework with uncorrelated measurement errors, where the ‘true’ variables
are predetermined, and assuming that the ‘true’ values of x;,...,x;r are serially

correlated the following relation can be exploited
E(vit — Vg1 /Tixy ooy Tit—a, fiy M) = 0. (8)

In fact, this idea can be extended to any fixed-effect transformation that eliminates
the individual effect from the transformed error term, without at the same time
introducing all lagged values of v into the transformed error term. Orthogonal
deviations (see, Arellano and Bover (1995)) is another possible example of this sort
of transformation. The fact that these transformations do not introduce all lagged
values of the disturbances into the transformed error term allow us to use suitably
lagged time varying variables as instruments for the transformed model.

It worth noticing that with respect to the situation described by (8), in the
absence of measurement error or when the ‘true’ variables are strictly exogenous,
additional instruments are available. For example, in the absence of measurement

error, (8) becomes

E(Uz’t - Uz‘tq/xﬂ, vy L1, fz', )\t) =0, (9)

16The extent of the bias from measurement error produced by the different transformations is
likely to differ and may provide an important identification tool. See, Griliches and Hausman
(1986).

I7In fact, even if it is consistent, it will in general be inefficient because it does not take into
account the first order serial correlation produced by first differencing.




or under uncorrelated random measurement error in the time varying explanatory

variables but with the ‘true’ zs strictly exogenous, (8) becomes
E(vit = Vit—1/Ti1, ooy Tit—2, Titg1s -0 Tir, fiy M) = 0. (10)

Even if there is no strict exogeneity of the z;, either because of feedback effects
and/or classical measurement error, there are still moment conditions in levels that
might help to identify v or to increase the efficiency with which we estimate (3 or
both. However, the set of internal instruments available in the absence of strict
exogeneity is restricted. For example, if condition (7) holds, we have the following

moment condition
E(Uit/A!EiQ, couy Amit—17 >\t) = O

when the ‘true’ z;s are predetermined and there is uncorrelated measurement error.

Finally, a standard procedure in the estimation of wage equations has been to use
a Hausman'® test in order to compare the within-group estimates of the parameters
of interest with the more efficient, under the null hypothesis of mean independence
(3), GLS estimates. It is worth noticing that, for the test in the standard econometric
package to shed some light on the existence of any endogeneity affecting the estimates
of the parameters of interest, it should be the case that there is no heteroskedasticity,
no autocorrelation and strict exogeneity of the x; with respect to the v;;. When
there is heteroskedasticity and/or serial correlation none of the previous estimators
are optimal under the null or the alternative hypothesis. Moreover, in the absence
of strict exogeneity and with the time dimension of the panel short none of them
are consistent.

In the next part of this Section, we review some GMM estimators for panel data
suitable for dealing with predetermined variables, measurement error and absence
of mean independence as well as some specification tests that are available in this

framework.

2.2 A generalized method of moments estimator and some
specification tests

Given our concern with the possible absence of strict exogeneity in the x;s with

respect to v;s and the possible correlation between the z;s, f;s, and n, we will

18See, for example, Hausman and Taylor (1981).
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estimate the wage equation using an instrumental variable approach in which, the
instruments are weighted optimally so as to form a Generalized Method of Moments
(GMM) estimator®?.

Given the possible correlation between the xs, f;s, and the individual effect,
n;, we use a first-differences transformation to estimate 3. In such case, the GMM
estimator is (omitting time effects®”)

-1

b= auzi) Ax (Y 28 A, S o ndzd | An | > ZF A |

1

1

(11)
where Az; is a stacked vector of Ax;; and Aw; is a stacked vector of observations on
Aw;. Conditions (10), (9), and (8) established different sets of instruments available
under different scenarios. If there is uncorrelated measurement error, the ‘true’ x;
are predetermined with respect to v,s, and we allow the implicit reduced form to be

different in each cross-section the instrument matrix, Z¢ has the form?!?2 23

Tix - Tir-2

For any consistent estimate of ( the optimal choice of Ay can be calculated as
[N SN (z A@A@Zi‘l)}_ . Our preliminary consistent estimates of 3 are ob-
tained using as a weighting matrix (N1 3N Z&H4Z$) !, where H? is a matrix
with twos on the leading diagonal, minus one on the first off-diagonal, and zero else-

where?*. Tt is worth pointing-out that this estimator does not require that we assume

homoskedasticity across time or individuals. In fact, all the GMM standard errors

19Hansen (1982) and White (1982) showed that improvements in efficiency over two-stages least
squares are possible by optimally weighting the distance between the sample and population mo-
ments, with the weights being the inverse of the covariance matrix of the sample moments.

207f we include time dummies and a constant, as we do in the empirical section, we need to drop
experience from Ax;.

21If the matrix of instruments has this form, then the first observation on the stacked vectors
Az; and Aw; are Ax;3 and Aw;s, respectively. Therefore this estimator requires that T' > 3.

22Tn an unbalanced panel, for individuals with incomplete data the rows of Z¢ corresponding to
the missing equations are deleted, and missing values in the remaining rows are replaced by zeros.

23In theory, we could have also used the time-invariant variables, f;, in the instruments’ set for
each of the cross sections. However, we suspect that they might be only weakly correlated with the
instrumented time varying right-hand side variables and therefore we prefer not to include them.

24 Notice, however, that if the v;s are not only serially uncorrelated but also homoskedastic, the
first-step estimate is asymptotically equivalent to the two-step estimate.



reported in this paper are asymptotically robust to time-series or cross-sectional
heteroskedasticity of unknown type.

In the empirical section that follows we will concentrate in the estimation of wage
differentials for time varying characteristics such as employer size, union status and
industry affiliation. As we have mentioned in the first part of this Section, 2.1,
in addition to the more traditionally used moments conditions in first-differences,
moment conditions in levels may also be available even when all x;; are suspected of
being correlated with the individual effect. The use of the additional moment restric-
tions may increase the efficiency with which time varying coefficients are estimated
(see, Arellano (1993) and Blundell and Bond (1998)).

Assuming an uncorrelated measurement error structure, with the ‘true’ x;s pre-
determined with respect to v, and if condition (7) holds, a GMM estimator for 5 and
7 similar to (11), but that also uses level moment conditions, can be constructed as
follows: instead of Aw; we use now the stacked vector Aw,;” =(Aws, ..., ANwip, Wiz, ..., wir),
instead of Az; we use now the stacked vector Az =(Az3 0, ..., Axir 0,233 fiy ..., Tir
f3)?® with 0 a g x 1 vector of zeroes, instead of Z¢ the matrix of instruments is now

Z4 0

where if we only suspect that the x;; are correlated with n, and restricting the
coefficients in the first stage regression for the f; to have a common coefficient in all

cross-sections Z! has the form?®,

3 . fz
Azir_q fi

If we suspect that some of the time varying variables are uncorrelated with the indi-
vidual effect, we can introduce in Z! the level of those variables lagged once instead
of introducing the first differences of them. Introducing both will be redundant
given the moment conditions for the first-differenced equations. Moreover, if any of

the time invariant variables is suspected to be correlated with the individual effect

25 Notice that we can include now the experience variable in the set of time varying right-hand side
variables for both the equations in first-differences and in levels even if we include time dummies.

26 Although there are more moment conditions for equations in levels if we add to the instruments’
set Ax;_s for s > 1, it can be proved that there are redundant once we take into account the
moment conditions for the equations in first-differences. See Arellano and Bover (1995).
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(e.g., schooling) it could be excluded from the instruments’ set?’. The weighting

matrix for the first-step regression is

H 0
+ __ 7
w= 1]

where I; is a an identity matrix with dimension 7" — 2%,

Arellano and Bond (1991) and Arellano (1993) propose a battery of specification
tests that can be applied in this framework. First, as there are plenty of overi-
dentifying restrictions available if T > 3 and different assumptions related to the
specification of the wage equation imply that different sets of instruments are avail-
able, tests of overidentifying restrictions become a very valuable tool in assessing
model specification. The validity of the overidentifying restrictions can be tested?
using a two-step robust Sargan-Hansen test. The expression for this test for the
model in first-differences, for example, is

N N
SH=N"* (Z Aﬂ;zﬁ) Ay (Z Z;”A@) .

i
SH is asymptotically distributed Chi-square under the null that the overidentifying
restrictions are valid with degrees of freedom equal to the number of overidentifying
restrictions. Also, under different sets of assumptions about the model only a nested
set of instruments are valid. This makes possible to use a two-step Sargan-Hansen
difference test to assess two possible models. For example, the set of instruments
available with uncorrelated measurement error and the ‘true’ x;; predetermined with
respect to v, say L, is nested within the set of instruments available with prede-
termined z; but in the absence of measurement error, say Lo, (see, conditions (8)
and (9), respectively). Then, with obvious notation, the Sargan-Hansen difference
test is SHy — S H;. This test is asymptotically distributed Chi-square under the null
that the additional moment conditions are valid with L, — L; degrees of freedom.
Notice that here we just referred to two-step Sargan-Hansen tests because these
are the only tests robust to heteroskedasticity, which is a pervasive feature of wage

equations.

2TThe question is, however, how good an instruments’ set is Zi+ to identify any of the coefficients
of the time invariant characteristics excluded from the instruments’ set.

28Tn an unbalanced panel, the dimension will be equal to the number of levels equations observed
for individual i. In a balanced panel without measurement error the dimension will be T — 2.

29To be more precise this test provides, under the null, a joint test for the overidentifying
restrictions and for other aspects of model misspecification.
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Second, it is important for the validity of the whole instrumenting procedure
in the first-differenced equations to test whether there is serial correlation in the
vgs. For this purpose, we employ the one degree of freedom test ms that tests
for the absence of second order serial correlation in the disturbances of a model
in first-differences. The test is distributed N(0,1) under the null of lack of second
order serial correlation in the first-differenced disturbances (by construction we will
expect first order serial correlation in the disturbances of a model in first-differences).
Again, we use a variance-covariance matrix that is robust to individual and time-
series heteroskedasticity for this test.

Finally, we can use the Hausman type tests proposed in Arellano (1993) to test
for the absence of mean independence and, more generally, for the validity of the
instruments’ set for the equations in levels. The idea in Arellano (1993) is to "regard
correlated effect biases as misspecification due to the exclusion of relevant variables
in a standard regression model” (p. 87). Consider a wage equation, (1), where
the z;; are predetermined with respect to v, (4). The null hypothesis is mean

independence, (3), and the alternative hypothesis is

E(m/xn, ey Ty [ )\t) = Cvllxz-t + O/in

with o7 and/or asy different from zero. Omitting time effects and assuming for

simplicity that ap =0

E(yi/xi, oty i) = Bau+yfi+ EMy/Tia, . Ta, )

= [ry+vfi + iz

Combining equations in first-differences and in levels

]l e

Yt it i Tt
We can estimate the parameters in (14) consistently under the null with a GMM
type estimator as the one we have described above. Using a block diagonal matrix
of instruments Z;", see (13), and under the maintained hypothesis that, using Z¢ =

diag(xi, i1 Tigy .oy Tyl Tiz ... Tipo1), 18 consistently estimated under the null and

the alternative from the first-differences. Then, a Wald test of the null hypothesis

12



that ay = 0 tests for the lack of correlation between the 7, and the instruments used

in Z!. So, if

7t = ’ :
3 fz
Z;r f i

a rejection of the null hypothesis in the Wald test can be interpreted as rejecting
the null of mean independence® .

As with the traditional Hausman test we can produce a focused test by only
including a set of regressors that take the value of zero in the first-differenced equa-
tions and reproducing the level of the variables we are focus on for the equations in
levels. If we estimate the system of first-differenced and level equations consistently
under the null of mean independence. Then, a Wald test for the null that the coeffi-
cients on the additional regressors are jointly zero tests whether the first-differenced
estimates of the variables we are focus on (which we maintain are consistently esti-
mated under the null and the alternative) are statistically similar to those obtained
using the level equations (consistently estimated only if the instruments in Z! are
uncorrelated with the individual effects).

An important feature to notice about Arellano’s formulation of the Hausman
test is that it not only allows for the fact that the x; can be predetermined or
measured with error, but also that the test can be computed using an asymptotic
variance-covariance matrix that is robust to heteroskedasticity and autocorrelation

of unknown type.

3 Data and results
3.1 Data

The data source used in this work is the British Household Panel Survey (BHPS).
The BHPS is a nationally representative survey of some 5,500 households (cov-
ering approximately 10,000 individuals) randomly selected. The survey has been
conducted from September to December 1991 and annually thereafter [see Taylor

(2000)]. Here, we use the eight available waves of the panel. The sample is restricted

30(Clearly, if aps # 0 and we include f; in Z! then a Wald test that rejects a; = 0 will imply
that some endogeneity issues are likely to be affecting the estimates of 3 but not necessarily that
aq ;é 0.
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in this study to those individuals who are 16 to 65 years of age, employed in the
private sector®! for paid work, receive a gross hourly wage of more than one pound,
work less than a hundred hours a week®?, have complete information on the variables
of interest and that do not increase their years of full time education over the sample
period. Excluding individuals with less than four consecutive observations, we were
left with an unbalanced sample of 1204 individuals with the number of observations
varying between four and eight and an average of 5.75 observations per individual.

For reasons of space we will focus on the estimation of wage differentials for time
variant characteristics such as employer size, union affiliation and industry status.
Finding a suitable set of internal instruments for time invariant characteristics such
as years of schooling would merit another paper. Even so, some interesting con-
clusions and questions for further research on the schooling effect are drawn in this
paper. To simplify the exposition that follows, let me call zy; the vector of time
varying characteristics that we are interested in (i.e., industry affiliation, union sta-
tus, and employer size) and xs; those that we are not (i.e., experience®, experience
squared, marital status, type of occupation, part-time status, and location) so that
Tyt = (T4, T2it). Experience is dropped from the set of z5; when we only use equa-
tions in first-differences to avoid perfect multicolinearity with the time dummies.
The following time invariant characteristics are included when we use conditions in
levels: years of full-time schooling, male dummy and white dummy.

Table 1 presents the definition of the variables used, average characteristics, and
the number of transitions in and out of a given category that are observed over the
entire sample period for some of the variables used to estimate the wage equation.

In the next part of this Section we report estimates of size, union, and industry

wage differentials. The reference group for each set of dummy variables is, respec-

31 Private sector is defined in opposition to public sector and it includes: private owned firms,
privatized firms, and private non-profit organizations.

32 Because of the usual omission of labor supply considerations in the estimation of wage equations
it is usually advisable to restrict the discussion to full-time employed males. (Of course, unless
one is particularly interested in the earning patterns of part-time workers or females.) In our data
set we cannot restrict ourselves to full-time employed males as there is not enough time-series
variability in that data set to make any sense of the IV techniques we would like to apply. As an
attempt to ameliorate any possible misspecification, we introduce in the wage equation a part-time
dummy and we interact gender with experience, experience squared and marital status.

33 As we control for time specific effects by including year dummies we drop experience from the
set of time varying covariates when we only use moment conditions in first-differences. If we also
use moment conditions in levels we do not need to follow this procedure.
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tively, service industry, no workplace union, and firm with less than 25 employees.
We maintain a common sample period 1993-1998 across all the specifications, the
sample contains 1204 individuals and 4515 observations in total. Our estimation pro-
cedure was implemented using DPD98 for Gauss [see, Arellano and Bond (1998)]
and DPD1.00a for Ox [see, Doornik, Arellano and Bond (1999)].

3.2 Results

Here we present the results of estimating the wage equation, (1), under different
sets of assumptions concerning the correlation between right-hand side variables
and the error term that we have explained in Section 2.1. Our empirical strategy
is to start by estimating the wage equation using the more traditional methods:
OLS levels, GLS, within-groups and OLS first-differences. A rule of thumb that
emerges from Griliches and Hausman (1986) study of models with errors in variables
for panel data is to compare within estimates and OLS differenced estimates. If
they turn out to be dissimilar the assumption of strict exogeneity of the z; with
respect to v;; may be inappropriate. In such cases, we can try to estimate a first-
differenced wage equation using suitable lagged and, perhaps, forwarded variables to
instrument for the endogenous variables. If we can find a suitable set of instruments
for the first-differenced equations, we can try to include moment conditions in levels
in order to increase the efficiency of the estimates. Of course, even if we cannot
find evidence to reject the strict exogeneity of the x;; variables with respect to the
time varying idiosyncratic shock we can still benefit from using moment conditions
in levels to increase efficiency. If all the z; are uncorrelated with the individual
effect, however, there is no need for a fixed-effects transformation. We should take
care before reaching this conclusion if we use traditional Hausman test procedures
(e.g., Hausman and Taylor (1981)), however, as the correct specification for the test

depends on whether the z;; are strictly exogenous or not with respect to the v,;.
3.2.1 Traditional approaches

We start by presenting in Table 2 the more popular approaches to estimate wage
differentials in Labor Economics which, with the time dimension fixed, are only
consistent under the assumption of strict exogeneity of the x; with respect to the

time varying idiosyncratic shock and/or lack of correlation between the individual
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effect and x;1, ..., z;r and f;. The standard errors reported in column (i), (iii) and
(iv) are asymptotically robust to time-series or cross-sectional heteroskedasticity and
autocorrelation of unknown type.

A necessary condition for a model in levels to provide consistent parameter esti-
mates is that the z;; are uncorrelated with the individual effect n,. In column (i) of
Table 2 we present OLS levels estimates. If the necessary condition holds, these are
consistent even if z;; is only predetermined with respect to v;s. The t-statistics and
Wald tests suggest that Size, Union and Industry wage differentials are statistically
significant at any conventional level. Computing the wage differentials as exp(ﬁ) -1,
members of a workplace union earn on average 7.5 percent more than those in jobs
where there is no union and individuals in establishments with more than 1000 em-
ployees earn on average 34.9 percent more than those working in establishments
with less than 25 employees, for example. The m; and mq tests provide evidence of
strong serial correlation, suggesting the presence of individual effects.

If, in addition to strict exogeneity and lack of correlation between the individual
effect and the covariates in the wage equation, we assume a typical error compo-
nent structure with homoskedasticity over time and across individuals. Then, the
standard GLS estimator proposed by Balestra and Nerlove (1966) will provide more
efficient estimates of the wage differentials than OLS levels. GLS estimates are pre-
sented in column (ii). Still, the ¢-statistics and Wald tests suggest that the wage
differentials are statistically significant at any conventional level. In comparison to
OLS levels, the GLS standard errors are on average more than forty percent lower
suggesting important gains in precision from using GLS. However, the GLS standard
errors are not robust to general forms of heteroskedasticity and autocorrelation®*.
Also, notice that the point estimates for size and industry wage differentials are
considerably smaller in relation to the OLS levels estimates. For example, in the
wage differential for employees in establishments with more than 1000 employees
there is a reduction of 17.1 percentage points in relation to OLS levels.

Even under strict exogeneity of the time varying characteristics with respect to
vjs, the estimates in column (i) and (ii) of Table 2 are inconsistent if the individual

effect is correlated with either some of the x;; and/or f;. For a fixed T', under strict

34However, these are robust to the type of autocorrelation produced by the presence of the
individual effect.
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exogeneity, a within group estimator or a first-differenced OLS estimator provides
consistent estimates for the effects of time varying characteristics on wages. For size
and industry wage differentials, both the OLS levels and GLS estimates are much
larger than the within-groups, column (iii), and OLS first-differences estimates, col-
umn (iv). In fact, we cannot reject the null that the Industry wage differentials are
now jointly statistically insignificant. Comparing the standard errors, there is some
loss of precision in comparison to GLS but there is a clear gain in precision either in
column (iii) or (iv) in relation to OLS levels. A striking feature from comparing col-
umn (iii) and (iv) is the similarity between within-groups and OLS first-differences
estimates. This feature also holds for longer lengthened differenced equations esti-
mated by OLS (not reported here). This suggests, after all, that the effect of any
biases resulting from the fact that some of the included variables are not strictly
exogenous has a minor impact on the estimates of the parameters of interest.
Notice that the union wage differential (especially for members of the workplace
union) is fairly similar in the four columns of Table 2. In fact, an heteroskedasticity
and autocorrelation consistent Hausman type test (that will only be valid under the
assumption of strict exogeneity of the x;; with respect to v;s) clearly supports the
null of no correlation of the union variables with the individual effect. This test is
constructed estimating a system of first-differenced and level equations by OLS in
which we include a set of regressors that take the value of zero in the first-differenced
equations, and reproduce the level of the union variables for the equations in levels.
The test statistic is a Wald test for the null that the coefficients on the additional
regressors are jointly zero. The value of the x3 statistic is 0.911 and the p-value is
0.634. However, a similar Hausman test that focuses on all the variables of interest
together has a x3; value of 87.776 clearly rejecting the null hypothesis that jointly
the estimates of the parameters of interests from OLS levels and OLS first-differences

are the same.

3.2.2 GMM first-differenced estimates

Although our rule of thumb suggests that the assumption of strict-exogeneity of z;
with respect to v;, is perhaps a good idea, we would like to back-up this piece of
intuition with some test statistics. In order to do so, we present the results of GMM

estimation of first-differenced wage equations under different assumptions concerning
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the exogeneity of the variables of interest in Tables 3 and 4. This approach is
suitable for that enterprise because the first-difference transformation eliminates the
individual effect so that we do not need to worry about the correlation between 7,
and z;. However, it does not introduce all lagged values of the time varying shocks
in the transformed error term so that we can test whether the internal instruments
are strictly exogenous or not. The instruments’ matrix in Tables 3 and 4 has the
general form described in (12). As we would like to focus on testing the validity
of the strict-exogeneity assumption for the variables of interest, x1;;, we only retain
Zos—2 and To;_3 In the instruments’ set for all columns of Tables 3 and 4. Thus, if
there is no evidence of second order serial correlation in the first-differenced residuals
the evidence that follows is robust to the lack of strict-exogeneity in xo;. As we go
along, we will report the set of instruments involving the variables of interest in
each of the columns of Tables 3 and 4. It is worth noticing that theoretically, we
could have introduced in the instruments’ set further lagged /forwarded variables in
many occasions. However, in practice, we are restricted by the fact that the dummy
variables do not exhibit enough time-series variation. Moreover, one should expect
very distant observations in the past to provide little information on current changes.

In columns (i) to (iv) of Table 3 we present optimal (two-steps) GMM estimates
as defined by (11). This estimator allows time varying characteristics to be correlated
with the individual effects but assumes that the v;s are serially uncorrelated. The
my statistics reported in columns (i) to (iv) provide a signal that this specification
for the vys is plausible. Column (i) presents estimates of wage differentials that
assume that there is an uncorrelated measurement error structure affecting each of
the time varying variables and that the ‘true’ z;; and v, are correlated for any s < t.
Under these assumptions only xy;_2, ..., 1;1 can be introduced in the instruments’
set. In particular, in the estimation of column (i), we only use z1; o and ;3.
The Sargan-Hansen test shows that the overidentifying restrictions are not rejected
in this case.

In column (ii) we examine whether future instruments may be valid by adding
T1it41 and Z1;49 to the instruments’ set used for column (i). This would be a
sound practice if the ‘true’ x1; were strictly exogenous with respect to v;s. Neither

the Sargan-Hansen test rejects the validity of the overidentifying restrictions nor
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the Sargan-Hansen difference test rejects the validity of the additional instruments
(in relation to the set of instruments used in column (i)). This suggests that it
is reasonable to assume that the ‘true’ value of the variables of interest, xq;, are
strictly exogenous with respect to the time varying idiosyncratic shock, v;s.

Column (iii) relaxes the measurement error assumption of column (i) and adds
Z144—1 to the instruments’ set used there. Again, neither the Sargan-Hansen test nor
the Sargan-Hansen difference test rejects the validity of the additional instruments
(in relation to the set of instruments used in column (i)). This suggest that is
reasonable to assume that the estimates for the variables of interest, xq;, are not
significantly affected by measurement error.

So far there is pretty compelling evidence that the variables of interest are strictly
exogenous with respect to the time varying idiosyncratic shocks. Our last test for this
hypothesis is produced by adding z1;—1, T1i, T1it+1, and x;12 to the instruments’
set of column (i). The Sargan-Hansen test and the Sargan-Hansen difference test
support the findings of columns (ii) and (iii).

Monte Carlo evidence reported by Arellano and Bond (1991) and Blundell and
Bond (1998) suggest that even with reasonably large sample sizes, inference based
on two-step estimators might not be reliable, particularly, when the v; are het-
eroskedastic. They recommend that inference (with the exception of Sargan statis-
tics) should be based on first-stage estimators that use robust standard errors. Table
4 reproduces the results of Table 3 using first-stage estimates with robust standard
errors.

The my statistics reported in Table 4 are similar to those in Table 3, confirming
that it is plausible to assume that the v;s are serially uncorrelated. In relation to
the estimates and their standard errors. In comparison to OLS first-differences, the
point estimates in column (i) of Table 4 (the more robust in terms of absence of
strict-exogeneity in the x1;;) are in general larger in absolute value but their standard
errors are also more than three times larger than those obtained using OLS. As we
would have expected, there are important gains in precision from increasing the
number of instruments we use. For example, expanding the instruments’ set of
column (i) in Table 4 by adding x1; 1, column (iii), produces an average fall of

more than fifty percent in the standard errors.
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Not surprisingly, the point estimates and standard errors in column (iv) of Table
4 are very similar to those from within-groups and OLS first-differences in columns
(iii) and (iv) of Table 2, respectively. However, the standard errors in column
(iv) of Table 3 are half the size of those in the same column of Table 4. This
suggest that basing our inference in first-step robust standard errors is probably
well justified in this case. Only one out of eight Wald tests computed for Industry
and Size differentials can reject, at conventional levels, the null of joint statistical
insignificance in Table 4. This is in striking difference with Table 3 where seven out
eight Wald test reject the null at either the one or five percent level. Column (iv)
of Table 4 is where the larger number of statistically significant wage differentials
are detected. The t-test rejects the null that the size dummies and workplace union
dummies are individually statistically significant at least at the five percent level.
Moreover, the Wald statistic for the Size dummies has a p-value of 0.018.

Before moving on, assuming that in this case the x1; are strictly exogenous with
respect to the time varying idiosyncratic shock, we may wonder whether we can
trust the evidence we collected from the Sargan-Hansen test. As we know (see,
Arellano and Bond (1991) and Ziliack (1997)), this test may tend to under-reject
especially in the presence of heteroskedasticity. For this reason we have carried-out
a set of simple experiments by including the dependent variable in the instruments’
set. We hope that in this way we can explore whether, for our sample size and given
the total number of instruments we use, the Sargan-Hansen test can pick-up the
presence of any invalid instrument. In addition, this exercise will allow us to learn
more about whether the static specification for the wage equation is correct. The
results of these experiments are presented in Table 5.

In row (i) of Table 5 we add wy, w;_1, wy_o and w;_3 to the instruments’ set used
for column (i) in Tables 3 and 4. We know that there are no grounds to introduce
wy and wy_y in the instruments’ set. w;_o would be valid instrument only in the
absence of serial correlation in the v;; and with the model not being incorrectly
specified by the exclusion of a lagged dependent variable. In row (ii) we add w; 1,
wy_o and wy_3 to the instruments’ set used for column (i) in Tables 3 and 4. The
Sargan-Hansen test clearly rejects the validity of the overidentifying restrictions and

the Sargan-Hansen difference test rejects the validity of the additional instruments
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in both cases. In row (iii) we add w; 5 and w;_3 to the instruments’ set of column (i)
in Tables 3 and 4. In this case, neither the Sargan-Hansen test rejects the validity
of the overidentifying restrictions nor the Sargan-Hansen difference test rejects the
validity of the additional instruments. This suggests that we cannot reject the
assumption of lack of serial correlation in the v;s and the static specification for the
wage equation.

If we repeat this exercise (not reported here) for the instruments’ set used in
columns (ii) and (iii) of Tables 3 and 4 we find pretty similar results to those reported
in rows (i) to (iii) of Table 5. In rows (iv) to (vi) we repeat this exercises using the
largest set of instruments’ used in the first-differenced equations, those of column
(iv) in Tables 3 and 4. In row (iv) the Sargan-Hansen test clearly rejects the validity
of the overidentifying restrictions and the Sargan-Hansen difference test rejects the
validity of the additional instruments in relation to the set of instruments used in
column (i) of Tables 3 and 4. However, in row (v), where we still have the invalid
instrument w;_;, the Sargan-Hansen test and the Sargan-Hansen difference test
only reject the null marginally, at a ten percent level of statistical significance. This
probably suggests that when the set of instruments is relatively large we should take

marginal rejections as a serious sign of misspecification for these tests®.
3.2.3 Using moment conditions in first-differences and in levels

Two closely related issues remain to be investigated. The first is whether any of the
x1; can be assumed to be uncorrelated with the individual effects. The second is to
what an extent we can increase efficiency by using moment conditions in levels if they
were available. In Table 6 we use a GMM estimators which also exploits moment
conditions in levels. With the exception of the Sargan-Hansen and Sargan-Hansen
difference tests we report first-step robust estimates as we believe that inference
based on these estimates is more reliable. Ideally we will use as instruments for
the first-differenced equations those in column (iv) of Tables 3 and 4. However, in

columns (i) to (iii) we opted for the simplest procedure of using stacked vectors of

35We might wonder given the result for the Sargan-Hansen difference test of column (iii) in
Table 3 what would have happened if we have only add to the instruments’ set in column (iii) 14
rather than @14, 1441, and 1442 as we did in column (iv). In such case, the p-value for the
Sargan-Hansen test is 0.168 and for the Sargan-Hansen difference test is 0.124.
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Ax; as instruments for the equations in first-differences®®. We prefer this specifica-
tion because we are worried about the performance of the Sargan-Hansen statistics
with such a number of instruments and there is no much disagreement in the point
estimates or standard errors comparing OLS first-differences with column (iv) of
Table 4. For the level equations we add to the time varying variables the following
time invariant characteristics: years of full-time schooling, male dummy and white
dummy. In the instruments’ set for the level equations time invariant characteristics
are included as strictly exogenous variables and with the same coefficient for all the
cross-sections of the first stage regression. It is worth pointing-out that none of the
results that follow are affected by excluding schooling from the instruments’ set. We
will report some schooling estimates in Table 7 although the main focus here is the
estimation of the coefficients of x;;. Finally, in concordance to our treatment of
the x;; variables for the first-differenced equations, we use Axs; as instruments for
the level equations in columns (i) to (iii)*”. As we go along we will report how we
included the variables of interest in the instruments’ set for columns (i) to (iii) and
the complete set of instruments for column (iv).

In column (i) we use as instruments for the level moment conditions first-differences
of the variables of interest, Ax;. For the extra-moment conditions to be valid, it
is only required that the correlation between x;; and 7, is assumed constant. The
Sargan-Hansen test does not reject the validity of the overidentifying restrictions.
Moreover, a one-step robust Hausman-Arellano test for the variables of interest has
a p-value of 0.774. This indicates that we cannot reject the null that there are no
endogeneity issues affecting the estimates for the variables of interest. In compari-
son to OLS first-differences the point estimates are similar but there seems to be no

gain in precision from using these additional moment conditions.

36 Obviously, we have only tested the strict exogeneity of the x1;; with respect to the time varying
idiosyncratic shock. As union status, industry affiliation and employer size are correlated with the
Zo4, inconsistency in the estimates of the coefficients for the latter variables can carry over to
the estimates of the variables of interest. However, for a model in first-differences that uses as
instruments x;41, € and ;1 the value of the Xgog statistic for a Sargan-Hansen test is 348.050
which cannot reject the validity of the overidentifying restrictions at a 5 percent level. This imply
that we may be in safe ground using a stacked vector of Az;; as instruments for the first-differences.
Further evidence on the minor impact of this assumption for the estimation of the coefficients of
the variables of interest is provided in column (iv) of this Table.

3"We do not introduce the first differences of the London variable in the instruments’ set for
the levels equation because it causes perfect multicollinearity. Also, first-differences of experience
needs to be excluded from the instruments’ set for the levels equation because we are including
time dummies.
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In column (ii) the instruments’ set for the level equations uses the current levels
rather than the changes for the variables of interest while we keep the current changes
for the time varying variables. If x1; is a valid instrument for the moment conditions
in levels, then the x1;; are uncorrelated with the individual effect. Both the Sargan-
Hansen test and Arellano’s version of the Hausman test reject the validity of these
instruments, suggesting that at least some of the x1;; variables are correlated with
the unobservable individual effect. Notice that the estimates for Size and Industry
wage differentials increase in relation to OLS first-differences and start looking like
the OLS levels estimates. Our tests results suggest that, in general, OLS levels and,
in particular, cross-sectional estimates are biased because of the correlation between
the individual effects and the right-hand side variables of the wage equation.

Of course, the result in column (ii) does not rule out the fact that some of
the variables of interest may in isolation be uncorrelated with the individual effect.
Thus, one exercise that we pursue is to mix first-differences and levels of different
variables to see whether it is safe to take some of them as uncorrelated with the
individual effect. So, we have tried by using in the instruments’ set size in levels and
union and industry variables in first-differences, union in levels and size and industry
variables in first-differences, etc. The only specification that passes all diagnostic
tests is presented in column (iii), here we instrument the level equations using the
current first-differences for industry and size and the current level only for union.
This result confirms our earlier suspicion that the union variable is uncorrelated
with the individual effect. The estimate for the union variables might seem a bit
higher in relation to OLS first-differences but the standard errors are higher as well.
Notice also that, according to the respective Wald statistics, only the size dummies
are jointly statistically significant at conventional levels.

A quick look at the standard errors in column (i) to (iii) reveal that there are
no efficiency gains in relation to OLS first-differences. Of course, then, we may
wonder where the efficiency gains from the level moment conditions have gone. Also
we may be interested to know how the system estimates presented so far compare
with those that are more robust to the absence of strict-exogeneity in the x; with
respect to v;s. For this purpose, in column (iv), we estimate a system that uses

Tito and x4 3 as instrument for the first-differenced equations (as in column (i)
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of Table 4). We instrument the level equations using the lagged first-differences
for all time varying variables with the exception of union, the level of the union
variables lagged once, and stacked values of all the time invariant characteristics®®.
The diagnostic tests do not detect problems with this specification. There is an
average gain in precision of around ten percent from the extra moment conditions
if we compare with the standard errors of the one-step GMM estimates that only
use first-differenced moment conditions (see, column (i) of Table 4). In general,
comparing with results in column (iii) of Table 6 the parameter estimates are pretty
similar. Notice, however, that if we compare the standard errors in column (iii) with
those in column (iv) we find gains in precision of more than fifty percent in column
(iii). So, in fact, it is quite reassuring that the instruments’ set in column (iii)
gives similar point estimates to those obtained with the instruments’ set in column
(iv) as in the latter we allow all the z; to have an uncorrelated measurement error
structure and for the ‘true’ x; to be predetermined with respect to v;.

In Table 7 we present a set of one-step robust GMM estimates for the schooling
variable. In column (i) we report the schooling coefficient that we obtained when
estimating Table 6. This instruments’ set includes stacked values of the schooling
variable. As we have seen above, the diagnostic tests provide no evidence of mis-
specification in the instruments’ set used for columns (i), (iii) and (iv). Remarkably,
the wage differentials obtained with the instruments’ set of columns (i) and (iii) are
almost three quarters higher than those from OLS (with almost identical standard
errors). In column (ii) of Table 7 we exclude the stacked value of schooling from the
instruments’ set. Both the point estimates and the standard errors increase slightly
in relation to column (i) but these are still very precisely estimated. Not surpris-
ingly, the Sargan-Hansen test does not reject the validity of the overindentifying
restrictions in rows (i), (iii) and (iv) of column (ii). In sum, the evidence presented
here does not support the view that there is a strong correlation between the school-
ing variable and the unobserved individual effect. In fact, the OLS levels estimates
seem to show considerable downward bias. This is because of inconsistency in other

coefficients estimates is carrying over to the schooling coefficient estimates.

38See note 37 for the treatment of experience and London variable in the instruments’ set for
the level equations.
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4 Concluding remarks and further research

We have started the paper by pointing out different aspects of the specification of
wage equations that should be considered when applying panel data techniques to
the estimation of wage differentials. Then, we have presented a family of GMM
estimators and specification tests for panel data, with fixed time dimension and
large cross-sectional dimension, available under different specifications. Finally, we
have applied these techniques to the estimation of a wage equation using the eight
available waves of the British Household Panel Survey (BHPS).

We have found that the strict exogeneity assumption of the time varying char-
acteristics with respect to the time varying idiosyncratic shock is not rejected, at
least for the variables we focused on this paper (size, union and industry). There
is compelling evidence of correlation between the right-hand side variables and the
unobserved individual effect in particular for size and industry dummies. This pre-
cludes the use of GLS or OLS levels to obtain consistent estimates of any of the
coefficients in the wage equation. However, there seems to be no evidence of cor-
relation between the individual effect and the union variables. More surprisingly,
none of our diagnostic tests suggest a strong correlation between years of full-time
schooling and the individual effect.

The results of our favorite specification (Table 6 column (iii)) reveal that the
industry wage differentials are jointly statistically insignificant, once we control for
the unobservable individual traits. However, there are statistically significant wage
differentials associated with the size of the employer and with the existence of a
workplace union. For example, members of a workplace union earn on average 8.9
percent more than those that work in firms where there is no workplace union. The
OLS levels estimate for an additional year of schooling is 0.037. The estimate of our
preferred specification is 0.064 suggesting that the OLS levels estimates seem to be
considerably downward biased because inconsistency in other coefficients estimates
is carrying over to the schooling coefficient estimates.

Our findings suggest two important questions for further research. First, we are
surprised to find a lack of evidence to support the hypothesis that the variables of
interest in this paper are predetermined rather than strictly exogenous. We think

that a possible explanation is that we are working with a usual hourly wage measure.
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The fact that the reported hourly wage is usual might be smoothing-out some of
the feedback and (probably persistence) that one would expect. Unfortunately, it is
not possible to construct a point in time hourly wage measure given that only usual
weekly hours of work are reported in the BHPS. But it might be worth investigating
this issue either with weekly wage data or with other dataset.

Second, most of the literature that studies the schooling wage differential con-
centrates on controlling for the endogeneity of the schooling variable but omits the
problem of potential endogeneity of other right-hand side variables. In particular,
this is the case in studies that only use information in levels or in cross-sectional
settings (e.g., Angrist and Krueger (1991) and Blundell et. al (2000)). Therefore,
our finding that there is considerable bias in the schooling coefficient because of in-
consistency in the estimates of other coefficients, rather than because of correlation

between schooling and the individual effects, merits further research.
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Table 1: Definitions, average characteristics and number of transitions

Variables Average Number of
characteristics  transitions
Earnings: Logarithm of usual gross 1.829 -
nominal hourly wages (0.508)
Size 1 to 24 employees 0.331 616
(0.471)
25 to 199 employees 0.359 900
(0.480)
200 to 999 employees 0.226 663
(0.418)
1000 or more employees 0.083 255
(0.276)
Union: Member of work-place union 0.243 227
(0.429)
Non-member of work-place union 0.137 361
(0.344)
No work-place union 0.620 372
(0.485)
Industry: Mining 0.007 26
(0.082)
Construction 0.026 62
(0.159)
Manufacturing 0.346 364
(0.476)
Transport, Utilities & Communication 0.097 155
(0.296)
Wholesale & retail trade 0.192 337
(0.394)
Finance, Insurance & Real Estate 0.127 89
(0.333)
Services 0.205 323
(0.404)
Marital status: Married 0.682 189
(0.466)
Part time: Work less than 35 hours a week 0.168 226
(0.374)
Schoaling: Y ears of full time education 12.422 0
(2.647)
Experience: Age minus 5 minus schooling 21.551 -
(11.709)
Location: Southeast 0.196 33
(0.397)
London 0.097 19
(0.296)
Type of Occupation: Professional 0.072 254
(0.259)
Managerial or technical 0.319 705
(0.466)
Skilled 0.481 818
(0.500)
Unskilled 0.128 328
(0.334)
Gender: Male 0.566 0
(0.496)
Ethnic background: White 0.978 0
(0.147)
Total Number of Individuals 1204
Total Number of Observations 6923

Source: British Household Panel Survey (BHPS).

Notes:

1) Standard deviations are reported in parentheses.
2) Transitions arein and out of a given category.
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Table 2: OLS levels, GLS, within-groups and OLS first-differences estimates

Dependent variable:

Logarithm of usual gross nominal 0] (i) (iii) (iv)
hourly wages
25 to 199 employees 0.148** 0.063** 0.025* 0.020
(0.022) (0.011) (0.013) (0.013)
200 to 999 employees 0.171** 0.081** 0.034* 0.032*
(0.024) (0.014) (0.015) (0.015)
1000 or more empl oyees 0.299** 0.164** 0.082** 0.094**
(0.034) (0.020) (0.024) (0.029)
Member of work-place union 0.072** 0.072** 0.054** 0.062**
(0.021) (0.015) (0.017) (0.019)
Non-member of work-place union 0.030 0.039** 0.014 0.025
(0.022) (0.013) (0.016) (0.016)
Mining 0.423** 0.112* 0.060 0.093*
(0.107) (0.052) (0.039) (0.037)
Construction 0.033 0.003 0.006 0.039
(0.055) (0.037) (0.047) (0.0412)
Manufacturing 0.049 0.001 0.007 0.005
(0.028) (0.017) (0.025) (0.022)
Transport, Utilities & Communication 0.055 0.003 -0.006 0.004
(0.039) (0.022) (0.029) (0.028)
Wholesale & Retail Trade -0.068* -0.079** -0.041 -0.026
(0.032) (0.018) (0.027) (0.024)
Finance, Insurance & Real Estate 0.255** 0.133** -0.003 0.002
(0.040) (0.023) (0.038) (0.046)
Years of full time schooling 0.037** 0.056** - -
(0.005) (0.004)
my 12.451 8.067 -27.119 -6.536
(p-value) (0.000) (0.000) (0.000) (0.000)
m; 10.475 2.763 2.684 1.647
(p-value) (0.000) (0.000) (0.007) (0.100)
wald Size 89.694 77.475 12.341 10.431
(p-value) (0.000) (0.000) (0.006) (0.015)
Wald Industry 81.184 83.824 10.302 11.783
(p-value) (0.000) (0.000) (0.112) (0.067)
Method of Estimation oLs GLS Within- OLSFirst-
Levels Groups Differences
Source: British Household Panel Survey (BHPS).
Notes:

1) Sample period is 1993-1998. There are 1204 individuals and 4515 observations.

2) Asymptotic standard errors are reported in parentheses.

3) In columns (i), (iii) and (iv) standard errors are robust to general time-series and cross-sectional heteroskedasticity .

4) ** statistically significant at a 1 percent level. * statistically significant at a5 percent level.

5) Other regressors included in the wage equations. Columns (i) and (ii): Experience interacted with Gender, Experience Squared
interacted with Gender, Male dummy, White dummy, Marital status dummy interacted with Gender, Time dummies, London dummy,
South east dummy, Part-time dummy, Professional occupation dummy, Managerial and technical occupation dummy, and Unskilled
dummy. Columns (iii) and (iv): asin columns (i) and (ii) but excluding Experience interacted with Gender, Schooling, Male dummy,
and White dummy.

6) The omitted dummies of interest are less than 25 employees, No workplace union and Services industry.

7) my and m, aretests of first and second order seria correation in first differenced disturbances, asymptotically distributed as N(0,1)
under the null of no serial correlation.

8) Wald is atest of joint statistical significance of the corresponding dummi es, asymptotically distributed Chi-square under the null
with 3 degrees of freedom for Size and 6 for Industry.

9) In column (i), (iii) and (iv) estimation was implemented using DPD98 for Gauss (see, Arellano and Bond (1998)) and in column (ii)
using DPD1.00a for Ox (Doornik, Arellano and Bond (1999)).

31



Table 3: Optimal (two-steps) first-differenced GMM estimates

Dependent variable:

Logarithm of usual gross nominal 0] (i) (iii) (iv)
hourly wages
25 to 199 employees 0.038 0.058** -0.014 0.030**
(0.030) (0.019) (0.012) (0.006)
200 to 999 employees 0.043 0.050* 0.008 0.042**
(0.038) (0.023) (0.017) (0.007)
1000 or more empl oyees 0.024 0.049** 0.040 0.065**
(0.056) (0.034) (0.022) (0.010)
Member of work-place union 0.130** 0.081** 0.109** 0.049**
(0.038) (0.024) (0.020) (0.009)
Non-member of work-place union 0.077** 0.060 0.049** 0.033**
(0.027) (0.021) (0.014) (0.008)
Mining 0.119* 0.060 0.038 0.063**
(0.059) (0.056) (0.030) (0.022)
Construction -0.158 -0.063 0.023 0.037**
(0.099) (0.051) (0.024) (0.010)
Manufacturing -0.115* -0.019 -0.035 0.023*
(0.058) (0.038) (0.020) (0.010)
Transport, Utilities & Communication -0.136 -0.087 -0.036 0.001
(0.081) (0.048) (0.025) (0.013)
Wholesale & Retail Trade 0.018 0.032 -0.018 -0.021
(0.072) (0.042) (0.022) (0.012)
Finance, Insurance & Real Estate 0.038 0.112* 0.077** 0.000
(0.071) (0.051) (0.039) (0.013)
my -6.742 -6.634 -6.597 -6.552
(p-value) (0.000) (0.000) (0.000) (0.000)
m; 0.949 1.372 1.334 1.492
(p-value) (0.342) (0.170) (0.182) (0.136)
Wald Size 1.938 9.593 8.536 51.951
(p-value) (0.371) (0.022) (0.036) (0.000)
Wald Industry 21.312 19.181 17.415 49.800
(p-value) (0.002) (0.004) (0.008) (0.000)
Sargan-Hansen [d.f.] 216.144[210] 308.343[309] 293.381[276]  441.647 [441]
(p-value) (0.371) (0.500) (0.226) (0.482)
Sargan-Hansen Difference [d.f.] - 92.196 [99] 77.273[66] 225.503[231]
(p-value) (0.673) (0.162) (0.590)
Instruments Xyi: t-2,t-3 Xy t+2, 143, Xy -1, t-2, Xyit+2,t+1, ¢,
t-2,t-3 t-3 t-1,t-2,t-3
Xai: t-2,1-3 Xyi: t-2, 1-3 Xyi: t-2, 1-3 Xoi: t-2, 1-3

Source: British Household Panel Survey (BHPS).

Notes:

1) Sample period is 1993-1998. There are 1204 individuals and 4515 observations.

2) Asymptotic standard errors are reported in parentheses. Standard errors are robust to general time-series and cross-sectional
heteroskedasticity.

3) ** statistically significant at a 1 percent level. * statistically significant at a5 percent level.

4) Other regressors included in the wage equations: Experience Squared interacted with Gender, Marital status dummy interacted with
Gender, London dummy, South east dummy, Part-time dummy, Professional occupation dummy, Managerial and technical occupation
dummy, and Unskilled dummy. Time dummies are included as regressors and instrumentsin all equations.

5) The omitted dummies of interest are less than 25 employees, No workplace union and Retail and wholesale trade.

6) m; and my are tests of first and second order serial correlation in first differenced disturbances, asymptotically distributed as N(0,1)
under the null of no serial correlation.

7) Wald is atest of joint statistical significance of the corresponding dummies, asymptotically distributed Chi-square under the null
with 3 degrees of freedom for Size and 6 for Industry.

8) Sargan-Hansen is a test of overidentifying restrictions, asymptotically distributed Chi-square under the null with degrees of freedom
in brackets.

9) Sargan-Hansen differenceis a nested test for the validity of the additional instruments, asymptotically distributed Chi-square under
the null with degrees of freedom in brackets. The nested instruments’ set is always the one we use for column (i).

10) Estimation was implemented using DPD98 for Gauss (see, Arellano and Bond (1998)).
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Table 4: One-step robust first-differenced GMM estimates

Dependent variable:
Logaritm of usual gross nominal 0] (i) (iii) (iv)
hourly wages
25 to 199 empl oyees 0.010 0.043 -0.011 0.024*
(0.041) (0.029) (0.020) (0.012)
200 to 999 empl oyees -0.026 0.001 -0.011 0.032*
(0.056) (0.040) (0.028) (0.014)
1000 or more employees -0.047 -0.007 0.038 0.075**
(0.092) (0.064) (0.039) (0.025)
Member of work-place union 0.096 0.068 0.087* 0.071**
(0.059) (0.039) (0.039) (0.018)
Non-member of work-place union 0.060 0.025 0.036 0.030**
(0.039) (0.032) (0.023) (0.014)
Mining 0.209 0.172 0.123* 0.087
(0.172) (0.095) (0.058) (0.036)
Construction -0.148 -0.039 0.014 0.025
(0.172) (0.119) (0.052) (0.042)
Manufacturing -0.087 0.008 -0.014 0.014
(0.088) (0.063) (0.033) (0.023)
Transport, Utilities & Communication -0.088 -0.008 -0.001 0.000
(0.121) (0.082) (0.045) (0.028)
Wholesale & Retail Trade 0.090 0.063 0.016 -0.024
(0.105) (0.078) (0.036) (0.024)
Finance, Insurance & Real Estate 0.069 0.132 0.076 -0.007
(0.102) (0.084) (0.079) (0.039)
my -6.662 -6.578 -6.541 -6.562
(p-value) (0.000) (0.000) (0.000) (0.000)
m, 0.909 1.320 1.304 1.632
(p-value) (0.363) (0.187) (0.192) (0.103)
Wald Size 0.858 3.168 2.579 10.091
(p-value) (0.836) (0.366) (0.461) (0.018)
Wald Industry 7.733 7.874 7.585 11.145
(p-vaue) (0.258) (0.247) (0.270) (0.084)
Instruments Xy t-2, -3 Xyt t+2, Xyt t-1, t-2, Xu:t+2,t+1, t,
t+3,t-2,t-3 t-3 t-1,t-2,t-3
Xy: 2,83 Xy t-2,t-3 Xy 12, 1-3 Xy £-2, 1-3

Source: British Household Panel Survey (BHPS).

Notes: AsinTable3.

33



Table 5: Test-specification for first-differenced GMM estimates: Including the de-
pendent variable in the instruments’ set

Sargan-Hansen Base
Additional Instruments: Sargan-Hansen [d.f.] Difference[d.f.] Instruments’
(p-value) (p-vaue) set
(@) Wt , Wet, Wez, Wea 311.786 [233] 95.642 [23]
(0.000) (0.000)
(if) Wi, Wez, Weg 284.872 [227] 68.728 [17] Xyi: 12, -3
(0.005) (0.000) Xoi: t-2, t-3
(iii) W2, Wea 234.928 [221] 18.784 [11]
(0.248) (0.065)
(V) W , Weg, W, Wig 563.339 [464] 347.195 [254]
(0.001) (0.000) .
(V) Wet, Weoy Wi 498.800 [458] 282.656 [248] Xlt._.t1+t2_,2t+t 13 t
(0.091) (0.064) %o t’-2 t’_3
(Vi) Wiz, Wis 463.737 [452] 247.593 [242] 2z e
(0.341) (0.389)

Source: British Household Panel Survey (BHPS).

Notes:

1) Sample period is 1993-1998. There are 1204 individuals and 4515 observations.

2) Regressors included in the wage equations: 3 Size dummies, 2 work-place union dummies, 6 Industry dummies Experience Squared
interacted with Gender, Marital status dummy interacted with Gender, London dummy, South east dummy, Part-time dummy,
Professional occupation dummy, Managerial and technical occupation dummy, and Unskilled dummy. Time dummies are included as
regressors and instruments in all equations.

3) Sargan-Hansen is a test of overidentifying restrictions, asymptotically distributed Chi-square under the null withfdezpeesio

in brackets.

4) Sargan-Hansen difference is a nested test for the validity of the additional instruments, asymptotically distributedeGigseu

the null with degrees of freedom in brackets. The nested instruments’ set is always the one we use for column (i) oh@ables 3 a

5) Estimation was implemented using DPD98 for Gauss (see, Arellano and Bond (1998)).
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Table 6: One-step robust first-differenced/levels GMM estimates

Dependent variable:
Logarithm of usual gross nominal 0] (i) (iii) (iv)
hourly wages
25 to 199 employees 0.025 0.132** 0.025 0.028
(0.015) (0.019) (0.015) (0.044)
200 to 999 employees 0.038* 0.182** 0.040* 0.106
(0.019) (0.022) (0.018) (0.058)
1000 or more employees 0.100** 0.309** 0.106** 0.126
(0.032) (0.032) (0.032) (0.094)
Member of work-place union 0.073** 0.020 0.085** 0.117**
(0.026) (0.022) (0.024) (0.032)
Non-member of work-place union 0.038* 0.006 0.061** 0.073*
(0.019) (0.022) (0.023) (0.033)
Mining 0.099 0.283** 0.104 0.304
(0.062) (0.092) (0.063) (0.193)
Construction -0.020 0.018 -0.018 -0.055
(0.046) (0.047) (0.045) (0.138)
Manufacturing -0.006 0.001 -0.002 -0.014
(0.027) (0.028) (0.027) (0.074)
Transport, Utilities & Communication 0.017 0.022 0.012 -0.033
(0.034) (0.039) (0.033) (0.089)
Wholesale & Retail Trade -0.033 -0.097** -0.037 -0.019
(0.029) (0.032) (0.029) (0.083)
Finance, Insurance & Real Estate 0.018 0.263** 0.030 0.035
(0.047) (0.037) (0.047) (0.109)
my -6.620 -7.032 -6.624 -7.269
(p-value) (0.000) (0.000) (0.000) (0.000)
m; 1.550 1.622 1.566 1.286
(p-value) (0.121) (0.105) (0.117) (0.199)
Wald Size 10.051 108.895 11.612 3.909
(p-value) (0.018) (0.000) (0.009) (0.272)
Wald Industry 6.953 98.054 8.001 3.187
(p-value) (0.325) (0.000) (0.237) (0.785)
Sargan-Hansen [d.f.] 151.248[138] 210.733[149] 162.910 [140] 338.520 [330]
(p-value) (0.208) (0.0012) (0.090) (0.361)
Sargan-Hansen Difference [d.f] - - - 122.376 [120]
(p-value) (0.423)
Hausman-Arellano 7.308 93.124 9.571 16.881
(p-value) (0.774) (0.000) (0.569) (0.111)
Instruments Dif:stacked AX;;  Dif:stacked AX; Dif:stacked AX,;, Dif: Xy: t-2,t-3
Xai: -2, 1-3
Lev: Ay, Ao Lev: Xyir, AXaie Lev: Uniony, Lev: Unionytq,

all other AX; all other AXi..1

Source: British Household Panel Survey (BHPS).

Notes:

1) Sample period for first-differenced equations is 1993-1998. There are 1204 individuals and 4515 observations.

2), 3) See the corresponding notesin Table 3.

4) Other regressors included in the first-differenced equations: Experience Squared interacted with Gender, Marital status dummy

interacted with Gender, London dummy, South east dummy, Part-time dummy, Professional occupation dummy, Managerial and

technical occupation dummy, and Unskilled dummy. Other regressors included in the level equations: the same used for the first

differences plus Experience interacted with Gender, Schooling, Mae dummy, White dummy. Time dummies are included as

regressors and instruments in all equations. In the instruments’ set for the level equations neither first-differencies ae expghe
London dummy are included. Male dummy , White dummy and Schooling are included stacked in the instruments’ set for the level
equations.

5), 6), 7), 8) See the corresponding notes in Table 3.

9) Sargan-Hansen difference is a nested test for the validity of the additional instruments, asymptotically distributaceGimelgu

the null with degrees of freedom in brackets. The nested instruments’ set is always the one we use for column (i) oh@ables 3 a
10) Hausman-Arellano is Arellano’s version of the Hausman test which is computed from on an auxiliary regression that includes
another set of regressors that take the value of zero in the equation in first-differences, and reproduce the leveisbbéshef var
interest for the equations in levels. The test statistic is a Wald test of the hypothesis that the coefficients on threseragrisors

are jointly zero, asymptotically distributed Chi-square under the null with 11 degrees of freedom.

11) Estimation was implemented using DPD98 for Gauss (see, Arellano and Bond (1998)).
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Table 7: Some one-step robust first-differenced /levels GMM estimates for the school-
ing coeflicient

Status of Schooling in the

. , Included Excluded
instruments’ set forthg level 0 (i)
equations:
Schooling Schooling
Coefficient Coefficient Sargan-Hansen [d.f]
Base Instruments’ set: (s.e) (s.e.) (p-value)
Dif: stackedAXi 0.063** 0.076** 151.520 [137]
Lev: AX i, AX it (0.006) (0.016) (0.187)
Dif: stackedAX 0.059* 0.093** 199.194 [148]
Lev: Xyit, AX it (0.006) (0.014) (0.003)
Dif: stackedAX 0.064** 0.071* 163.377 [139]
Lev: Uniony, all otherAX; (0.006) (0.016) (0.077)
Dif: X yi: t-2, t-3, X1 t-2, t-3 0.052** 0.044** 338.357 [329]
Lev: Uniony.1, all otherAXi.1 (0.007) (0.017) (0.349)

Source: British Household Panel Survey (BHPS).

Notes:

1) Sample period is 1993-1998. There are 1204 individuals and 4515 observations.

2) Asymptotic standard errors are reported in parentheses. Standard errors are robust to general time-series and ¢ross-sectiona
heteroskedasticity.

3) ** statistically significant at a 1 percent level. * statistically significant at a 5 percent level.

4) For column (i), other regressors included in the first-differenced equations are: 6 industry dummies, 2 work-placenomias) du

3 size dummies, Experience Squared interacted with Gender, Marital status dummy interacted with Gender, London dummy, South
east dummy, Part-time dummy, Professional occupation dummy, Managerial and technical occupation dummy, and Unskilled dummy.
Other regressors included in the level equations: the same used for the first differences plus Experience interactedwith Gende
Schooling, Male dummy, White dummy. Time dummies are included as regressors and instruments in all equations. In the
instruments’ set for the level equations neither first-differences in experience or the London dummy are included. Maladiummy a
White dummy are included stacked in the instruments’ set for the level equations. Column (i) reports the estimates fainthe scho
variables obtained in column (i) to (iv) of Table 6. Therefore, the only difference with Column (ii) of this Table is siernzithe
schooling variable stacked in the instruments’ set for the level equations.

5) Sargan-Hansen is a test of overidentifying restrictions, asymptotically distributed Chi-square under the null withf dregedes o

in brackets. See Table 6 for the Sargan-Hansen tests for column (i).

6) Estimation was implemented using DPD98 for Gauss (see, Arellano and Bond (1998)).
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