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Abstract

This paper discusses two classes of distributions, and stochastic processes derived from
them: modified stable (MS) laws and normal modified stable (NMS) laws. This extends
corresponding results for the generalised inverse Gaussian (GIG) and generalised hyperbolic
(GH) or normal generalised inverse Gaussian (NGIG) laws. The wider framework thus
established provides, in particular, for added flexibility in the modelling of the dynamics
of financial time series, of importance especially as regards OU based stochastic volatility
models for equities. In the special case of the tempered stable OU process an exact option
pricing formula can be found, extending previous results based on the inverse Gaussian and
gamma distributions.
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1. Introduction

This paper discusses extensions of the concept of Normal Inverse Gaussian processes, or NIG

processes for short, to what we shall call Normal Modified Stable processes, or NMS processes.

The term NIG processes, as used here, indicates a class of stochastic processes introduced

and studied in Barndorff-Nielsen (1997), Barndorff-Nielsen (1998a), Barndorff-Nielsen (1998b),

Barndorff-Nielsen and Shephard (2001a), Barndorff-Nielsen and Shephard (2001b), Barndorff-

Nielsen and Shephard (2001c) and Barndorff-Nielsen and Levendorskii (2001), see also Eberlein

(2001), Eberlein and Prause (2000), Prause (1998), Tompkins and Hubalek (2000), Barndorff-

Nielsen and Prause (2001). As discussed in the papers cited and in references given there,

the family of NIG (normal inverse Gaussian) distributions and the NIG processes, which are

constructed around the NIG family, have been found to provide accurate modelling of a great

variety of empirical findings in the physical sciences and in financial econometrics. The wider

class of NGIG (Normal Generalised Inverse Gaussian) or GH (Generalised Hyperbolic) pro-

cesses (cf. the references cited above) provides additional possibilities for realistic modelling of

dynamical phenomena.

Still, it is of some interest, and mathematically natural, to generalise a step further. In

particular this will establish a more flexible modelling framework and allow for additional testing

of NIG based models. The generalisation we shall be discussing is based on an extension of

the family of generalised inverse Gaussian (GIG) distributions to a class of distributions on

R+ = (0,∞), the Modified Stable or MS laws. The MS laws come about in the same way

that the GIG laws are derived from the IG (inverse Gaussian), namely by exponential and

power tempering (or tilting) from one of the positive κ-stable (0 < κ < 1) laws. Using the

MS distributions as mixing distributions for normal variance-mean mixtures yields the class of

NMS (normal modified stable) laws.

We surmise that all theMS distributions are infinitely divisible, and in fact selfdecomposable,

but have not, so far, been able to show this in general. As is well known, the GIG distributions

are selfdecomposable and the same is true of the subclass TS of MS obtained by exponential

tempering alone.

The NTS laws, i.e. normal variance-mean mixtures with TS mixing, are of some special

interest because the NTS Lévy processes generated from them, which may also be viewed as
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subordinations of Brownian motion with drift by the TS subordinators, are “structure preserving

with respect to convolution” in the same sense as is the case for the NG (normal gamma) and

the NIG Lévy processes.1

In Section 2 we introduce the class of MS laws and discuss some of their properties. Section

3 provides some background material on subordination, and in Sections 4 and 5 we consider the

special case of the TS and NTS laws and Lévy processes. In particular, we determine the tail

behaviour of the NTS laws and we derive an expression for the Lévy density from which the

small jumps regimes of the NTS Lévy processes can be inferred. Section 6 indicates the relation

to NG (Normal Gamma) and RLPE Lévy processes (Regular Lévy Processes of Exponential

type).

The relation of the results derived to the OU based modelling approach, discussed in Barndorff-

Nielsen and Shephard (2001a), Barndorff-Nielsen and Shephard (2001b) and Barndorff-Nielsen

and Shephard (2001c), is considered in Sections 7-9. Section 7 sets the scene, as it were, and

in Section 8 procedures for efficient simulation from the models, using recent work of Rosinski

(2001), are outlined. An application to financial models is given in Section 9, and the final

Section 10 contains a few concluding remarks. In two Appendices A and B we recall, for easy

reference, the definitions and some properties of the generalised inverse Gaussian and generalised

hyperbolic distributions.

2. MS and NMS laws

Let p(x;κ, δ) denote the probability density function of the positive κ-stable law S(κ, δ) with

cumulant transform −δ(2θ)κ, 0 < κ < 1, and let p(x;κ, δ, γ) denote the exponentially tilted

version of p(x;κ, δ) defined by

p(x;κ, δ, γ) = eδγp(x;κ, δ)e−
1
2
γ1/κx. (2.1)

The distribution with density (2.1) (κ ∈ (0, 1), δ > 0, γ ≥ 0) will be referred to as a tempered

stable law and we denote it by TS(κ, δ, γ). Next, consider for any ν ∈ R and γ ∨ (−ν) > 0 the

derived probability density

p(x;κ, ν, δ, γ) = c(κ, ν, δ, γ)xν+κp(x;κ, δ, γ), (2.2)

where c(κ, ν, δ, γ) is a norming constant.
1The class of TS distributions was introduced by Tweedie (1984). Hougaard (1986) discussed their applicability

in survival analysis. See also Jørgensen (1987) and Brix (1999).
In Geman, Madan, and Yor (2000) what are here called NTS Lévy processes have been studied, in the case of

zero drift, from a viewpoint different from the one of the present paper.
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Asymptotically as x → ∞ the density p(x;κ, δ, γ) is of the order of x−1−ν exp(−γ2x/2).

Hence xν+κp(x;κ, δ, γ) is certainly integrable at +∞ under the stated condition on γ and ν.

To see that xν+κp(x;κ, δ, γ) is, in fact, also integrable at 0+ we may use the result that if

G(x;κ) denotes the distribution function of the S(κ, 1) law then (see Feller (1971))

ex
−κ
G(x;κ) → 0 for x ↓ 0. (2.3)

Hence, for any ρ ∈ R, we have∫
ε
xρp(x;κ, 1)dx =

∫
ε
xρdG(x;κ)

= xρG(x;κ)|ε + ρ
∫
ε
xρ−1G(x;κ)dx,

and the integrability of xν+κp(x;κ, δ, γ) at 0+ follows.

We denote by MS (modified stable) the class of distributions on the positive halfline whose

densities are of the form p(x;κ, ν, δ, γ). Correspondingly, the law determined by p(x;κ, ν, δ, γ)

is denoted MS(κ, ν, γ, δ). The subclass of the family of MS laws obtained for κ = 1
2 is the class

of GIG (generalised inverse Gaussian) distributions.

Correspondingly, and in analogy with the construction of the generalised hyperbolic distri-

butions, we now introduce the class of normal modified stable (NMS) laws. A random variable

x is said to be distributed according to the normal modified stable law NMS(κ, ν, γ, β, µ, δ) if

it is of the normal variance-mean mixture form

x = µ+ βτ +
√
τε,

with ε ∼ N(0, 1) and τ ∼MS(κ, ν, γ, δ) and τ and ε independent.

We surmise that MS(κ, ν, γ, δ) is infinitely divisible, and in fact selfdecomposable, for arbi-

trary values of the parameters. However, a general proof of this is not available and, in view of

the generally complicated nature of the Lévy density of the GIG laws (cf. Barndorff-Nielsen and

Shephard (2001b, Subsection 5.1)), such a proof is likely to be hard to establish. Selfdecompos-

ability does hold when κ = 1
2 (the GIG laws) and also for ν = −κ (the TS laws; see beginning of

Section 4). It also holds for arbitrary κ ∈ (0, 1) when −(ν+κ) ∈ N (the set of natural numbers),

cf. Bondesson (1992, Theorem 4.4.1) and, furthermore, for κ = 1
m , m = 2, 3, .... provided that

γ > 0 and ν + κ ∈ N. The latter conclusion follows from more recent work of Bondesson (1999)

combined with results from Bondesson (1992). In fact, it is shown in Bondesson (1999) that for

κ = 1
n the stable law S(κ, δ) is of type HCM (Hyperbolically Completely Monotonic) and this

implies, by the equivalence of i) and v) in Bondesson (1992, p. 81) that MS( 1
n , ν, γ, δ) is GGC

(a Generalised Gamma Convolution) and hence selfdecomposable, see Theorem 3.1.1 and the

sentence just preceding it in Bondesson (1992).
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Provided MS(κ, ν, γ, δ) is infinitely divisible the same is true of NMS(κ, ν, γ, β, µ, δ). In

this case we say that a stochastic process y∗ is an NMS Lévy process if it is a Lévy process

with y∗(1) following the NMS(κ, ν, γ, β, µ, δ) law. We may then, alternatively, characterise y∗

as being the sum of a drift term µt and the subordination of Brownian motion with drift bβ

by the MS(κ, ν, γ, δ) subordinator, i.e. the subordinator τ∗ such that τ∗(1) is distributed as

MS(κ, ν, γ, δ). The class of NGIG (or GH) Lévy processes are recovered by letting κ = 1
2 .

3. Subordination

In this Section, for use below, we list a few basic facts on subordination.

A subordinator is a Lévy process τ such that τ(t) ∈ (0,∞) for all t > 0. We assume

throughout that τ has no drift, i.e. τ is a pure jump process, and that its life time is infinite in

the sense that inf{t ≥ 0 : τ(t) = ∞} = ∞. The cumulant function of τ(t) is tk(θ) where

κ(θ) = a0θ −
∫ ∞

0
(1− e−θx)V (dx),

with a0 ≥ 0 and where V is the Lévy measure of τ(1).

Consider a filtered probability space (Ω,F ,F[0,∞), P ), suppose that on this space there is

defined a Lévy process x and a subordinator τ , with x and z independent, and let y = x ◦ τ
be the subordination of x by τ , i.e. y(t) = x(τ(t)). Then y is also a Lévy process termed the

subordination of x by τ , and x is called the subordinand. In this case,

ψ(ζ) = κ(−φ(ζ))

where φ and ψ denote the characteristic functions of x(1) and y(1), respectively. If the charac-

teristic triplet of x is denoted (a, b, U) then y has characteristic triplet (a
, b
, U 
) given by

a
 = a0a+
∫
R+

∫
|x|≤1

xP (dx ‡ x(t))V (dt) (3.1)

b
 = a0b (3.2)

and

U 
(dx) = a0U(dx) +
∫
R+

P (dx ‡ x(t))V (dt). (3.3)

When the probability and Lévy densities exist, formula (3.3) takes the form

u
(x) = a0u(x) +
∫
R+

p(x; t)v(t)dt (3.4)

where p(x; t) is the density of the law of x(t). If, moreover, a0 = 0 then (3.1) may be written as

a
 =
∫
|x|≤1

signxu
(x)dx. (3.5)
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In particular, if x is Brownian motion with drift bβ then

C{ζ ‡ x(1)} = log E{eiζx(1)} = −1
2
ζ2 + iβζ.

Now setting

y∗(t) = µt+ bβ(τ(t)) (3.6)

we find that

C{ζ ‡ y∗(1)} = µt+ tK̄
{
1
2
ζ2 − iβζ ‡ τ(1)

}
(3.7)

where K̄{θ ‡ x} = log E{e−θx}, while

p(x; t) =
1√
2πt

e−
1
2
(x−βt)2/t

=
1√
2π
t−1/2eβxe−

1
2
(x2t−1+β2t) (3.8)

and

u
(x) =
1√
2π

∫
R+

t−1/2e−
1
2
(x2t−1+β2t)v(t)dteβx. (3.9)

On recalling that the inverse Gaussian law IG(δ, γ) has probability density function

pIG(x; δ, γ) =
δ√
2π
eδγx−3/2e−

1
2
(δ2x−1+γ2x) (3.10)

one observes that the latter formula may be rewritten in the easily memorised form

ū
(x) =
∫
R+

pIG(t;x;β)v̄(t)dt, (3.11)

where ū
(x) = xu
(x) and v̄(t) = tv(t).

4. TS and NTS laws

The Lévy density of TS(κ, δ, γ) is

u(x) = u(x;κ, δ, γ) = δ2κ
κ

Γ(1− κ)x
−1−κe−

1
2
γ1/κx (4.1)

and if a random variable x follows the TS(κ, δ, γ) law then x has cumulant transform

log Ee−θx = δγ − δ(γ1/κ + 2θ)κ, (4.2)

with its expectation and variance being

2κδγ(κ−1)/κ and 4κ (1− κ) δγ(κ−2)/κ. (4.3)

The fact that the distribution TS(κ, δ, γ) is selfdecomposable, which is important in connection

with the discussion in Sections 7 and 9 below, follows immediately from (4.1).
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Formulas (4.1) and (4.2) follow from the well-known expressions for the cumulant functions

and Lévy densities of the positive stable laws and the fact that exponential tilting of an infinite

divisible law is accompanied by the same tilting of the Lévy density (assuming the densities

exist).

For general κ ∈ (0, 1), explicit expressions of p(x;κ, δ), and hence of p(x;κ, δ, γ), are known

only in the form of series representations. Specifically we have (cf. for instance Feller (1971, p.

583))

p(t;κ, δ) =
1
2π
δ−1/κ

∞∑
k=1

(−1)k−1 sin(kπκ)
Γ(kκ+ 1)

k!
2kκ+1(t/δ1/κ)−kκ−1. (4.4)

However, the two cases κ = 1
2 and κ = 1

3 are exceptional in this respect.

Example 4.1 IG(δ, γ) law With κ = 1
2 we have TS(1

2 , δ, γ) = IG(δ, γ) where IG(δ, γ) de-

notes the inverse Gaussian distribution with probability density function (3.10). �

Example 4.2 TS(1
3 , δ, γ) law It is known (see Roberts and Kaufman (1966, p. 79)) that the

Laplace transform of the function

x−2/3K 1
3
(2x−1/2)

(where K 1
3

is a Bessel function) is given by

π√
3
e−3θ1/3

.

From this we obtain that the probability density function of the TS(1
3 , δ, γ) law is2

√
2
π
δ3/2eδ

3/2γx−3/2K 1
3
((2

3δ)
3/2x−1/2)e−

1
2
γ3x. (4.5)

�

Next, let x denote a random variable of the form x
L= µ+ βτ +

√
τε where τ ∼ TS(κ, δ, γ),

ε ∼ N(0, 1) and τ and ε are independent. The notation L= denotes the two variables are equal

in law. We then say that x follows the normal tempered stable law NTS(κ, γ, β, µ, δ)3.

The probability density function of NTS(κ, γ, β, µ, δ) has thus a mixture representation

which, in the above notation and assuming for simplicity that the location parameter µ is 0,
2We learned this result from Preben Blæsild (private communication). For γ = 0 the result specialises to a

formula for S
(

1
3
, δ

)
given in Uchaikin and Zolotarev (1999, p. 106).

3In particular, for κ = 1
2
we have that NTS( 1

2
, γ, β, µ, δ) is the same as the normal inverse Gaussian law

NIG(α, β, µ, δ) with α =
√

β2 + γ2.
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may be written as

p(x;κ, γ, β, 0, δ) =
1√
2π
eδγeβx

∫ ∞

0
t−1/2e−

1
2
(x2t−1+β2t)p(t;κ, δ, γ)dt

=
1√
2π
eδγeβx

∫ ∞

0
t−1/2e−

1
2
(x2t−1+α2t)p(t;κ, δ)dt, (4.6)

where α =
√
β2 + γ1/κ. Transforming the latter integral by the substitution s = t−1 we obtain

p(x;κ, γ, β, 0, δ) =
1√
2π
eδγeβx

∫ ∞

0
s−3/2e−

1
2
(x2s+α2s−1)p(s−1;κ, δ)ds. (4.7)

Example 4.3 NTS(1
3 , α, β, 0, 1) law. From (4.5) and (4.7) we find that the probability density

of NTS(1
3 , α, β, 0, 1) is

p(
1
3
, α, β, 0, 1) = (δ/π)3/2eδγeβx

∫ ∞

0
e−

1
2
(α2s−1+x2s)K 1

3
((2

3δ)
3/2s1/2)ds.

A reduction of the integral does not seem possible. �

The Lévy density of the NTS(κ, γ, β, µ, δ) law is derived in the next Section.

We note, furthermore, that the NTS laws are selfdecomposable, as follows from a result of

Sato (2001b), Sato (2001a).

The limiting behaviour of p(x;κ, γ, β, 0, δ) for x→ ± is determined by the limiting behaviour

of p(x;κ, δ) for x→ ∞. On account of the series representation (4.4) we have

p(x;κ, δ) ∼ δ2κ
Γ(1 + κ)

Γ(κ)Γ(1− κ)x
−κ−1,

for x → ∞. It follows, using also the fact that the density function (A.1) of the GIG law

integrates to 1, that the integral in (4.7) behaves asymptotically as∫ ∞

0
sκ−1/2e−

1
2
(x2s+α2s−1)ds = δ2κ+1 Γ(1 + κ)

Γ(κ)Γ(1− κ)α
κ+ 1

2 |x|−κ− 1
2Kκ+ 1

2
(α|x|).

Since, for x→ ∞,

Kλ(x) ∼
√
π

2
x−1/2e−x (4.8)

we finally get

p(x;κ, γ, β, 0, δ) ∼ 2κ+1δeδγ
Γ(1 + κ)

Γ(κ)Γ(1− κ)α
κ+ 1

2 |x|−κ−1e−α|x|+βx, (4.9)

as x→ ±∞. In particular, then, the NTS laws have semiheavy tails.
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5. TS and NTS Lévy processes

In the notation of Sections 3 and 4, let τ be a TS Lévy process, i.e. a Lévy process such that

for some values of κ, δ, γ we have τ(1) ∼ TS(κ, δ, γ). From (4.1) we find that for any t > 0

tu(x;κ, δ, γ) = u(x;κ, tδ, γ) (5.1)

and this implies that

τ(t) ∼ TS(κ, tδ, γ)

for all t > 0.

Next, let y∗ be the subordination by τ of Brownian motion with drift β, denoted bβ , plus a

drift term µt. In other words, y∗ is of the form y∗(t) = µt + bβ(τ(t)). We then say that y∗ is

a normal tempered stable Lévy process or an NTS Lévy process. Combining (3.11), (5.1) and

(4.2) we find that

y∗(t) ∼ NTS(κ, γ, β, tµ, tδ)

and

log E{exp(θy∗(t))} = tk(θ)

where

k(θ) = µθ + δγ − δ(α2 − (β + θ)2)κ (5.2)

and α =
√
β2 + γ1/κ. Thus, in particular, all the one-dimensional laws of y∗ are normal tempered

stable, with the same parameters κ, γ, β while the location-scale parameters µ and δ are both

proportional to t. This is an important property, well known for the special case of κ = 1
2 , i.e.

for the NIG Lévy processes.

Furthermore, using the formulae (3.9) and (4.1) it follows that the Lévy density of y∗(1) is

u
(x) =
δ√
2π

κ2κ+1

Γ(1− κ)α
κ+ 1

2 |x|−(κ+ 1
2
)Kκ+ 1

2
(α|x|)eβx. (5.3)

For x→ 0 we find, by (A.2),

u
(x) ∼ δ√
2π
κ22κ+ 1

2
Γ(κ+ 1

2)
Γ(1− κ) |x|

−2κ−1 (5.4)

while for |x| → ∞
u
(x) ∼ δ

2
κ2κ+1

Γ(1− κ)α
κ|x|−1−κe−α|x|+βx, (5.5)

where we have used (4.8).
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6. Relation to NG and RLPE Lévy processes

In this Section we discuss the relations of the NMS Lévy processes to the NG (Normal Gamma)

and the RLPE Lévy processes (Regular Lévy Processes of Exponential type). The former class

includes the variance gamma Lévy processes studied by Madan et al (see Madan and Seneta

(1990), Madan, Carr, and Chang (1998)). The latter class has been also referred to as Gen-

eralised Truncated Levy Processes or, in Carr, Geman, Madan, and Yor (2001), as CGMY

processes; see further in subsection 6.2 below.

6.1. NG Lévy processes

The NG (normal gamma) Lévy processes are obtained, like the NMS Lévy processes, by sub-

ordination of Brownian motion with drift β, the subordinator τ∗(t) being now a gamma Lévy

process. The special case β = 0 gives the variance gamma Lévy process.

Let
(ψ2/2)ν

Γ(ν)
xν−1e−

1
2
ψ2x,

be the probability density function of τ∗(1) and let y∗(t) denote the resulting NG (normal

gamma) Lévy process. Then the log Laplace transform of y∗(1) is

µθ + ν log{1 + (β/ψ)2 − (β/ψ + θ/ψ)2}.

The point we wish to note here is that this occurs as the limit for κ ↓ 0 of the log Laplace

transform (5.2) provided in the latter we have β fixed whereas δ and γ are chosen as functions

of κ such that κδγ = ν and γ = ψ2κ. In other words, for κ ↓ 0 the NTS(κ, ψ2κ, β, 0, ν/κψ2κ)

Lévy process converges in law to the NG(ν, β, ψ) Lévy process.

6.2. RLPE Lévy processes

The asymptotic relations (5.4) and (5.5) show that the NTS Lévy processes belong to the class

of RLPE processes (Regular Lévy Processes of Exponential type), as defined in Barndorff-Nielsen

and Levendorskii (2001). Another subclass of RLPE consists of the Lévy processes z for which

z(1) has Lévy density of the form

u(x) =
C−|x|−1−Ae−B−|x| for x < 0

C+x
−1−Ae−B+x for x > 0.

(6.1)

Such processes (or subclasses thereof) have been considered by Novikov (1994), Koponen (1995),

Mantegna and Stanley (2000), Boyarchenko and Levendorskii (1999), Boyarchenko and Leven-

dorskii (2000a), Boyarchenko and Levendorskii (2000b), Boyarchenko and Levendorskii (2000c),
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Boyarchenko and Levendorskii (2000d), Carr, Geman, Madan, and Yor (2001), and Rosinski

(2001).

Comparing to the formulae (5.3), (5.4) and (5.5) one sees that the NTS Lévy processes and

the extended Koponen class to a large extent behave similarly at 0 and at ±∞, provided C− =

C+ and 0 < A < 1. Note, however, that the NTS processes have smooth probability densities

and smooth Lévy densities. Also, the NTS processes are representable by subordination of

Brownian motion with drift. To what extent this is the case for the extended Koponen class

appears to be an open question.

7. MS-OU and OU-MS processes

7.1. The basic models

In recent work Barndorff-Nielsen and Shephard (2001b) and Barndorff-Nielsen and Shephard

(2001c) have developed non-negative OU processes as a building block for a new type of stochas-

tic volatility (SV) model. These SV models will be discussed in the next section, but for the

moment we focus on the OU processes. They are given by the solution to the stochastic differ-

ential equation (SDE)

dσ2(t) = −λσ2dt+ dx(λt).

Here the rate parameter λ is arbitrary positive and x(t) is a non-negative homogeneous back-

ground driving Lévy process (BDLP) — that is it is a process with independent, stationary

and non-negative increments. This means that the BDLP is a subordinator (see, for example,

Bertoin (1996) and Sato (1999)). The OU process is representable in law as

σ2(t) = e−λtσ2(0) + e−λt
∫ t

0
eλsdx(λs).

It is possible to construct an OU process with a marginal distribution which is a given

MS distribution, irrespectively of the value of λ, if and only if the MS distribution is self-

decomposable. We call such a process a MS-OU process. We have discussed this criteria

above, and from now we will assume it holds. It certainly holds for the important TS case. An

alternative modelling approach is to assume that x(t) is a MS Lévy process which, of course,

requires that the MS law is infinitely divisible (plus an additional minor regularity condition,

see Wolfe (1982)). We then call the corresponding OU model an OU-MS process.

In the OU-TS case the Lévy density of the BDLP is

u(x) = δ2κ
κ

Γ(1− κ)x
−1−κ exp

(
−1
2
γ1/κx

)
, κ ∈ (0, 1). (7.1)

11



The corresponding Lévy density for the BDLP of the TS-OU process is, using the general theory

of OU processes (Barndorff-Nielsen and Shephard (2001b),

ũ(x) = −u(x)− xu′(x)
= δ2κ

κ

Γ(1− κ)
(
κx−1 +

1
2
γ1/κ

)
x−κ exp

(
−1
2
γ1/κx

)
.

This shows that the BDLP of the TS-OU is the sum of a TS Lévy process with Lévy density

δ2κ
κ2

Γ(1− κ)x
−1−κ exp

(
−1
2
γ1/κx

)
,

plus a compound Poisson process4. The Lévy density of the compound Poisson process is

δ2κ−1 κ

Γ(1− κ)γ
1/κx−κ exp

(
−1
2
γ1/κx

)
which we rewrite as

δγκ
(γ1/κ/2)1−κ

Γ(1− κ) x−κ exp
(
−1
2
γ1/κx

)
showing that the summands of the process are Γ(1 − κ, 1

2γ
1/κ)-distributed while the Poisson

process has rate δγκ.

8. Series representation and simulation

8.1. Rosinski’s method

In order to use tempered stable processes in practicial applications it is often essential to be able

to simulate from them or from objects such as

e−λt
∫ t

0
eλsdx(λs) L= e−λt

∫ λt

0
esdx(s).

In this section we will review methods for carrying this out. These will involve the use of series

representations of stochastic integrals.

In some recent work Rosinski (2001) has shown how to simulate from stochastic integrals of

the type ∫ t

0
f(s)dx(s)

4Recall in general, if z is a nonnegative Lévy process with

K̄{θ ‡ z(1)} = −
∫ ∞

0

(1− e−θx)U(dx)

and if
c = U(0,∞) < ∞

then z is a compound Poisson process, the independent summands of which have distribution function F (x) =
c−1U(0, x] while the Poisson process has rate c.

12



when the Lévy density is of the form

u(x) = Ax−α−1e−Bx, x > 0.

This covers the TS-Lévy process and so can be used to sample the innovations for the TS-OU

and OU-TS processes. In particular

e−λt
∫ λt

0
esdx(s) L=

∞∑
i=1

exp (−λtri)min
{( aiκ

Aλt

)−1/κ
, eiv

1/κ
i

}
, (8.1)

where

{ei} , {vi} , {ai}, {ri}

are independent of one another and over i except for the {ai} process. Here the {ei} are

exponential with mean 1/B, {vi} and {ri} are i.i.d. standard uniforms. Further the a1 < ... <

ai < ... are the arrival times of a Poisson process with intensity 1.
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Figure 8.1: Graph of σ2(t) process against time TS(κ, δ, γ)-OU process for a variety of values
of τ . For each value of κ the parameters δ and γ are choosen to that the marginal distribution
of the process, TS(κ, δ, γ), has mean and variance of one.

In the TS(κ, δ, γ)-OU case we have that

A = δ2κ
κ2

Γ(1− κ) , B =
1
2
γ1/κ,
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which allows us to simulate the infinite activity part of the problem using (8.1), while the

additional compound Poisson process component of the innovation equals in law

N(λt)∑
i=1

exp (−λtr∗i ) ci, where ci
i.i.d.∼ Γ

(
1− κ, 1

2
γ1/κ

)
where the {r∗i } are i.i.d. standard uniforms while N(1) has expected value δγκ. To illustrate

these results we have drawn in Figure 8.1 sample paths from the TS(κ, δ, γ)-OU process for a

variety of values of κ. For each selected κ we have chosen δ and γ so that the unconditional

distribution of σ2(t) has a mean and variance of one. This is ensured by using the expressions

(4.3). We can see from the graph that as κ increases so the tail of the marginal distribution

lengthens.

Further, Rosinski (2001) shows that if we select A,B, α to fit the Lévy density of the

TS(κ, δ, γ), which is (7.1), then

σ2(0) L=
∞∑
i=1

min
{(aiκ

A

)−1/κ
, eiv

1/κ
i

}
. (8.2)

Here

A = δ2κ
κ

Γ(1− κ) , B =
1
2
γ1/κ.

An example of how the infinite sum (8.2) behaves is given in Figure 8.2 which graphs the

logarithm of the individual terms, against the value of the index i. It shows that for each value

of κ the series is dominated by the first few terms, although as κ goes to one this becomes less

sharp.

8.2. Computing the normal tilted stable density

The above algorithm for sampling from σ2(0) gives us a general algorithm for sampling from a

TS(κ, δ, γ) variables, and so from the corresponding normal tilted stable. To gain understanding

of the latter variable we have drawn an estimated version of its density in Figure 8.3 for various

values of κ. Throughout we choose δ and γ such that the mean of the TS is 0.62 and its variance

is fixed at 0.05, 0.2, 1 or 5 for Figures (a), (b), (c) and (d) respectively. The approximation is

based upon

f(x) =
1
M

M∑
i=1

1√
σ2j

φ(x/
√
σ2j), where σ2j i.i.d.∼ TS(κ, δ, γ), (8.3)

and φ(x) denotes the density of a standard normal variable. Throughout we selectedM = 26, 000

while we have plotted not the estimator but the log of the estimator. This is done in order to

focus on the tail behaviour of the NTS(κ, γ, 0, 0, δ) distribution.

This picture is really important for it shows two things we already know and one new thing.

When κ is close to zero we have a density which is close to being a normal mixed with a gamma.
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Figure 8.2: Graph of 5 simulations of the log of the individual terms min
{(

aiκ
A

)−1/κ
, eiv

1/κ
i

}
out of the infinite series (8.2) for a TS(κ, 0.5, 1) problem. This shows the rate of decay of these
terms.

This has linear tails and is typically regarded as being too thin for financial data. When κ is

close to being one half, this corresponds to a normal inverse Gaussian density which has been

used successfully in a number of financial studies. This has slower tail decay than linear. It is

particularly successful at fitting the returns from exchange rate series. When κ is bigger than

one half the tails are even heavier. This is important for equity returns typically have heavier

tails than exchange rate data and the flexibility to deal with this is very helpful. Of course

an alternative to this class, which also has this feature, is the Student t. This is a normal

mixed with an inverse gamma. Although this has advantages and is considered in some detail

by Barndorff-Nielsen and Shephard (2001b), it has the disadvantage that its associated Lévy

density is quite complicated. The NTS alternative is compelling for it has the advantage of the

fatter tails while being easy to handle mathematically.
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Figure 8.3: Graph of the estimated log-density of a symmetric NMS variable using a TS(κ, δ, γ)
model for the scale. Here κ is varied, while δ and γ are correspondingly choosen to ensure the
mean of the TS variable is 0.62 while the variance is 0 .05 , 0 .2 , 1 or 5.

9. Applications to financial economics

9.1. MS-OU and OU-MS based SV models

We can use MS-OU and OU-MS processes as models for the instantaneous volatility σ2(t) in

a stochastic volatility model of a log-price y∗(t) in financial economics. In these models the

log-price is assumed to follow the solution to the SDE,

dy∗(t) =
{
µ+ βσ2(t)

}
dt+ σ1/2(t)dw(t), (9.1)

where σ2(t) is assumed to be stationary and stochastically independent of the standard Brow-

nian motion w(t). It provides a generalisation of the Brownian motion models that have been

frequently used in finance and are used to explain the fat tails and serial dependence in equity

and exchange rate returns. Further, their structure is often exploited to price the associated

derivatives written on these assets (e.g. Hull and White (1987)). Reviews of the literature on

this topic are given in Taylor (1994), Shephard (1996) and Ghysels, Harvey, and Renault (1996).

Recalling the definition of returns over an interval of time of length ∆ > 0

yn = y∗ (∆n)− y∗ ((n− 1)∆) , n = 1, 2, .... (9.2)
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this implies that, whatever the model for σ2, it follows that

yn|σ2
n ∼ N(µ∆+ βσ2

n, σ
2
n). (9.3)

Here

σ2
n = σ2∗(n∆)− σ2∗ {(n− 1)∆} , and σ2∗(t) =

∫ t

0
σ2(u)du.

In econometrics σ2∗(t) is called integrated volatility, while we call σ2
n actual volatility (see

Barndorff-Nielsen and Shephard (2002)). Integrated volatility is the crucial quantity which

drives the behaviour of the returns. In the OU case this is tractable for we can use the result

that (see Barndorff-Nielsen and Shephard (2001b))

σ2∗(t) = λ−1
{
z(λt)− σ2(t) + σ2(0)

}
= λ−1(1− e−λt)σ2(0) + λ−1

∫ t

0

{
1− e−λ(t−s)

}
dz(λs). (9.4)

That is, integrated volatility is linear in the initial instantaneous volatility and the Lévy incre-

ments.

9.2. Simulation of returns from OU-based SV models

We can simulate returns from the SV model with OU-TS volatility by using (9.3), where the

sequence
{
σ2
n

}
can be produced by sampling

{
z(λn∆), σ2(n∆)

}
and then applying (9.4). In

turn
{
z(λn∆), σ2(n∆)

}
can be produced via the recursion(

z(λ∆)
σ2(∆)

)
L=

(
0

e−λ∆σ2(0)

)
+

∫ t

0

(
1

e−λ(∆−s)

)
dz(λs)

L=
(

0
e−λ∆σ2(0)

) ∞∑
i=1

(
1

exp (−λtri)
)
min

{( aiα
Aλt

)−1/α
, eiv

1/α
i

}
.

9.3. Cumulant functions for integrated volatility

9.3.1. General case

We notice that knowledge of the cumulant function of integrated volatility is sufficient to compute

the cumulant function of the log-price. Letting ε(t;λ) = λ−1(1− e−λt) we have, generically,

K{θ ‡ σ2∗(t)} = log E{e−θσ2∗(t)}

= λ

∫ ε(t;λ)

0
(1− λr)−1k(θr)dr + ḱ(θε(t;λ)). (9.5)

where

ḱ(θ) = K{θ ‡ σ2(t)} and k(θ) = K{θ ‡ z(1)}.
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An important relationship between these two functions is that (cf. Barndorff-Nielsen and Shep-

hard (2001b))

k(θ) = θḱ′(θ). (9.6)

Following the first draft of this paper the tail behaviour of σ2∗(t) has been studied by

Barndorff-Nielsen and Shephard (2001a) who showed that asymptotically the right hand tail of

σ2∗(t) is tempered stable.

The related result of the conditional (on σ2(0)) cumulant function for the integrated volatility

can be computed using the following expression:

K{θ ‡ σ2∗(t)− ε(t;λ)σ2(0)|σ2(0)} = log E{e−θσ2∗(t)|σ2(0)} − θε(t;λ)σ2(0)

= λ

∫ ε(t;λ)

0
(1− λr)−1k(θr)dr. (9.7)

This is quite an important expression for knowing this conditional cumulant is sufficient to give

us the conditional cumulant function of the log-price. In turn, this is enough to compute the

corresponding option prices. This has been carried out in the case of a gamma-OU by Barndorff-

Nielsen and Shephard (2001b) and for many other distributions by Nicolato and Venardos (2001)

and Tompkins and Hubalek (2000).

In the tempered stable case

ḱ(θ) = δγ − δ(γ1/κ + 2θ)κ and k(θ) = −δκθ(γ1/κ + 2θ)κ−1.

Rearranging

k(θ) = −δκγ1−1/κθ
(
1 + 2γ−1/κθ

)κ−1
where z = 2γ−1/κθ,

we find that the integral in (9.7) takes the form∫ λε(t;λ)

0
(1− s)−1k(λ−1θs)ds = −δκγ1−1/κλ−1θ

∫ λε(t;λ)

0
(1− s)−1s(1 + as)−1+κds (9.8)

where a = 2γ−1/κλ−1θ. This can be evaluated analytically in a number of cases, in particular

for κ = 1
2 and 1

3 , cf. Appendix C. Furthermore, it has been noted and communicated to us

by Friedrich Hubalek that for general κ the integral can be expressed in terms of Lerche’s Φ

function which is given by a Dirichlet series

Φ(x, k, a) =
∑
n≥0

xn

(k + n)a
.

10. Concluding remarks

In this paper we have developed the modified stable laws and the corresponding normal modified

stable. A special case of this structure is the tempered stable and normal tempered stable. The
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TS and NTS distributions can be used as the basis of Lévy processes on the positive half line

and on the real line, respectively. As discussed, the same applies for some of the other MS and

NMS distributions, and we speculate that it is, in fact, true generally (further analytic and

numerical evidence in favour of this conjecture is available in Bondesson (1999)).

The TS (and other modified stable) distributions can be used as the basis of non-Gaussian

OU processes and so can be exploited to construct new stochastic volatility models. The TS-OU

and OU-TS processes are very tractable, allowing us, in many cases, to compute the conditional

cumulant function of the integrated volatility, which means we have a closed form solution to the

option pricing problem for these types of processes. This extends previous work by ourselves,

and others, for the GIG family.
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Appendix A: generalised inverse Gaussian distributions

The generalised inverse Gaussian distribution GIG(λ, δ, γ) is the distribution on (0,∞) having

probability density function

p(x;λ, δ, γ) =
(γ/δ)λ

2Kλ(δγ)
xλ−1 exp{−1

2
(δ2x−1 + γ2x)} (A.1)

The parameters λ, γ and δ are such that λ ∈ R while γ and δ are both nonnegative and not

simultaneously 0. Furthermore Kλ is the modified Bessel function of the third kind and with

index λ. Letting γ̄ = δγ, (A.1) may be reexpressed as

p(x;λ, δ, γ) =
γ̄λ

2Kλ(γ̄)
δ−2λxλ−1 exp

{
−1
2
(δ2x−1 + γ̄2δ−2x)

}
from which it appears that δ2 is a scale parameter while γ̄ is invariant under scale transforma-

tions. For γ̄ = δγ = 0 the expression (A.1) should be interpreted in the limiting sense, using the

well known result that, for λ > 0 and x ↓ 0,

Kλ(x) ∼ Γ(λ)2λ−1x−λ (A.2)
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It follows immediately from the exponential form of the representation (A.1) that if x ∼
GIG(λ, δ, γ) then

Ee−θx = λ log{1 + 2θ/γ2}1/2 − logKλ(δγ) + logKλ

{
δγ

(
1 + 2θ/γ2

)1/2
}

(A.3)

For λ = −1
2 , (A.1) reduces to the probability density of the inverse Gaussian distribution

IG(δ, γ). Other special cases of the GIG laws are the reciprocal inverse Gaussian distribution

that corresponds to λ = 1
2 and is denoted RIG(δ, γ), the gamma distribution Γ(ν, α) obtained

for δ = 0 and with ν > 0, λ = ν and α = γ2/2 , and the reciprocal gamma distribution RΓ(ν, α)

which occurs for γ = 0 and with ν > 0, λ = −ν and α = δ2/2. Note that if x ∼ IG(δ, γ)

then x−1 ∼ RIG(γ, δ), and if x ∼ Γ(ν, α) then x−1 ∼ RΓ(ν, α). For these four distributions the

probability densities are:

IG(δ, γ) :

p(x) =
δ√
2π
e−δγx−3/2 exp{−(δ2x−1 + γ2x)/2} (A.4)

RIG(δ, γ) :

p(x) =
γ√
2π
e−δγx−1/2 exp{−(δ2x−1 + γ2x)/2} (A.5)

Γ(ν, α) :

p(x) =
αν

Γ(ν)
xν−1e−αx (A.6)

RΓ(ν, β) :

p(x) =
αν

Γ(ν)
x−ν−1e−αx

−1
(A.7)

The formula for the Lévy density of the GIG law is given, for instance, in Barndorff-Nielsen and

Shephard (2001b, Section 5.1).

Appendix B: generalised hyperbolic distributions

To define the generalized hyperbolic distributions, suppose u is a random variable with law

GIG(λ, δ, γ) and let x = µ+ u∆β + uy where y follows the m-dimensional normal distribution

with mean 0 and variance matrix ∆. For parametric identifiability, ∆ is assumed to have

determinant 1, i.e. |∆| = 1. The probability density of x is then

p(x;λ, α, β, µ, δ,∆) =
1

(2π)m/2
√|∆|

(γ/δ)λαm/2−λ

Kλ(δγ)

· (δ2 +R)(λ−m/2)/2
Kλ−m/2

{
α

(
δ2 +R

)1/2
}

· exp (〈β, x− µ〉) (B.1)
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where α = {γ2 + β∆β	}1/2 and

R = (x− µ)T∆−1(x− µ)

This class of distributions is closed under marginalization and conditioning (with respect to

subvectors of x).

The class of m-dimensional normal inverse Gaussian distributions is obtained for λ = −1
2 ,

while the class of hyperbolic laws corresponds to λ = (m+1)/2. The latter laws are characterized

by the fact the graphs of their log densities are hyperboloids.

Note also that the m-dimensional Student distributions are special cases of (B.1), obtained

for λ < 0, α = β = µ = 0 and ∆ = I. In particular, the Cauchy law occurs by further taking

m = 1, λ = −1
2 and δ = 1.

For the one-dimensional case m = 1 we denote the generalized hyperbolic distribution by

GH(λ, α, β, µ, δ). In this case the probability density function (B.1) takes the form

p(x;λ, α, β, µ, δ) =
γ̄λᾱ1/2−λ

√
2πδKλ(γ̄)

q

(
x− µ
δ

)λ−1/2

Kλ−1/2

(
ᾱq

(
x− µ
δ

))
eβ̄(x−µ)/δ (B.2)

where q denotes the function q(x) =
√
(1 + x2) and β̄ = δβ, γ̄ = δγ and ᾱ = δα = δ

√
(γ2 + δ2)

are location-scale invariant parameters.

It follows immediately from (B.2) and (4.8) that for x→ ±∞ we have

p(x;λ, α, β, 0, δ) ∼ const.|x|λ−1 exp(−α|x|+ β) (B.3)

Thus all the generalised hyperbolic laws have semiheavy tails.

Taking, for notational simplicity, µ = 0 it is illuminating to distinguish between the cases

λ > 0, λ = 0, and λ < 0, rewriting (B.2) in the three cases as5:

for λ > 0 (when we may let δ ↓ 0):

p(x;λ, α, β, 0, δ) =
γ2λα1−2λ

√
2πK̄λ(γ̄)

K̄λ−1/2

{
α
√
δ2 + x2

}
eβx (B.4)

for λ = 0:

p(x;λ, α, β, 0, δ) =
1

2K0(γ̄)
1√

δ2 + x2
e−α

√
δ2+x2+βx (B.5)

for λ = −ν < 0 (when we may let γ ↓ 0):

p(x;−ν, α, β, 0, δ) = 1√
2πδK̄ν(γ̄)

q
(x
δ

)−2ν−1
K̄ν+1/2

{
ᾱq

(x
δ

)}
eβx (B.6)

This specializes, when λ = −1
2 , to the probability density function of the normal inverse

Gaussian distribution:
5It is convenient here to introduce the notation K̄λ(x) = xλKλ(x) for λ > 0 and x > 0. By (5.9) we have

K̄λ(x) → Γ(λ)2λ−1 for x ↓ 0 and we therefore define K̄λ(0) = Γ(λ)2λ−1.
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p(x;α, β, µ, δ) = a(α, β, µ, δ)q
(
x− µ
δ

)−1

K1

{
δαq

(
x− µ
δ

)}
eβx (B.7)

where q(x) =
√
(1 + x2) and

a(α, β, µ, δ) = π−1α exp
{
δ
√
(α2 − β2)− βµ}

(B.8)

For λ = 1 we have the density of the one-dimensional hyperbolic law

p(x;α, β, µ, δ) =
γ̄

2δᾱK1(γ̄)
exp

{
−ᾱq

(
x− µ
δ

)
+ β̄

(
x− µ
δ

)}
(B.9)

The Laplace distributions (symmetric and asymmetric) occur as limiting cases of (B.9) for α, β

and µ fixed and δ ↓ 0.
The Student distributions and asymmetric versions of these are obtained by letting the mixing

law be GIG(−ν, δ, 0), that is we are mixing N(βu, u) with u following the RΓ(ν, δ2/2) law. The

resulting probability density is obtained by letting γ ↓ 0 in formula (B.6):

p(x;β, δ) =
1√

2πδΓ(ν)2ν−1
q
(x
δ

)−2ν−1
K̄ν+1/2

(
β̄q

(x
δ

))
eβx

the Student law with degrees of freedom 2ν

Γ(ν + 1
2)√

2πνΓ(ν)
(1 +

x2

2ν
)−ν−

1
2

occurring for β = 0 and δ =
√
2ν.

Furthermore, for δ = 0, µ = 0 and λ > 0 we obtain the normal gamma law NΓ(λ, α, ρ) with

2λ degrees of freedom and probability density function

p(x;λ, α, ρ) =
(1− ρ2)λα1/2+λ

√
2πΓ(λ)2λ−1

|x|λ−1/2Kλ−1/2(α|x|)eραx (B.10)

where ρ = β/α ∈] − 1, 1[. (In the symmetric case, that is for ρ = 0, this distribution is also

known as the variance gamma law.)

Appendix C: Analytic evaluation of some integrals

For the purpose of evaluation of the integral on the right hand side of (9.8) we note first that∫
(1− x)−1(1 + ax)κ−1dx =

1
1 + a

∫ {
1

1− x +
a

1 + ax

}
(1 + ax)κdx

= (1 + a)−1I(κ; a) + {(1 + a)κ}−1(1 + ax)κ

where

I(κ; a) =
∫
(1− x)−1(1 + ax)κdx
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The integral I(κ; a) can be evaluated explicitly for a range of values of κ. In particular, using

MAPLE, we have found

I(1
2 ; a) = −2

√
(1 + ax) + 2

√
(1 + a) arctanh

√
(1 + ax)√
(1 + a)

I(1
3 ; a) = −3 3

√
(1 + ax)

+
1
2

1 + a(
3
√
(a+ 1)

)2 ln
((

3
√
(1 + ax)

)2
+ 3

√
(1 + ax) 3

√
(a+ 1) +

(
3
√
(a+ 1)

)2
)

− 1 + a(
3
√
(a+ 1)

)2 ln
(

3
√
(1 + ax)− 3

√
(a+ 1)

)

+
1 + a(

3
√
(a+ 1)

)2

√
3 arctan

1
3

√
3

(
2

3
√
(a+ 1)

3
√
(1 + ax) + 1

)

I(1
4 ; a) = −4 4

√
(1 + ax) +

1 + a(
4
√
(a+ 1)

)3 ln
4
√
(1 + ax) + 4

√
(a+ 1)

4
√
(1 + ax)− 4

√
(a+ 1)

+2
1 + a(

4
√
(a+ 1)

)3 arctan
4
√
(1 + ax)

4
√
(a+ 1)

I(2
3 ; a) = −3

2

(
3
√
(1 + ax)

)2 − 1 + a
3
√
(a+ 1)

ln
(

3
√
(1 + ax)− 3

√
(a+ 1)

)
+
1
2

1 + a
3
√
(a+ 1)

ln
((

3
√
(1 + ax)

)2
+ 3

√
(1 + ax) 3

√
(a+ 1) +

(
3
√
(a+ 1)

)2
)

−(1 + a)
√
3

3
√
(a+ 1)

arctan
1
3

√
3

(
2

3
√
(a+ 1)

3
√
(1 + ax) + 1

)
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