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Abstract

Importance sampling is used in many aspects of modern statistics and econometrics to
approximate unsolvable integrals. Its reliable use requires the sampler to possess a variance,
for this guarantees a square root speed of convergence and asymptotic normality of the esti-
mator of the integral. However, this assumption is seldom checked. In this paper we propose
to use extreme value theory to empirically assess the appropriateness of this assumption.
We illustrate this method in the context of a maximum simulated likelihood analysis of the
stochastic volatility model.
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1 Introduction

One of the most important recent developments in statistics and econometrics has been the

use of simulation methods to estimate models (see, for example, the reviews in Ripley (1987),

Hajivassiliou and Ruud (1994), Gourieroux and Monfort (1996), Geweke (1997) and Liu (2001)).

A basic tool in much of this literature is importance sampling, which approximates the solution

to integrals via averages of simulations. In order to assess the accuracy of the importance

sampler the Lindeberg-Lévy central limit theory is used. However, this assumes the existence

of the variance of the importance sampler. Checking the validity of this assumption is often

difficult. In this note we provide a simple empirical check on this assumption based on extreme

value theory.

Importance sampling was discussed as early as Kahn and Marshall (1953) and Marshall

(1956), while it was popularised in the influential monograph by Hammersley and Handscomb

(1964, Section 5.4). It was first used in econometrics by Kloek and Van Dijk (1978) in their work

on computing posterior densities. Further significant developments on this topic were reported
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by Geweke (1989). In particular we wish to evaluate the integral

c =
∫
Ω

f(x)dx, (1)

where we know how to calculate f(x), but cannot solve the integral analytically. To deal with

this we introduce an importance sampling density g(x) which is easy to evaluate and simulate

from and whose support is also Ω. We then approximate c by

ĉ =
1
R

R∑
j=1

wj , where wj = w(xj), (2)

where

w(x) =
f(x)
g(x)

and xj i.i.d.∼ g(x),

with g(x) assumed to be strictly positive for all x ∈ Ω. By construction we know that {wj} are

i.i.d. and that E(w) = c. As a result, a simple application of Kolmogorov’s strong law of large

numbers (e.g. Geweke (1989, p. 1320) and Gallant (1997, p. 132)) shows that

ĉ
a.s.→ c, as R → ∞,

whatever importance sampler we design. However, in order to easily measure the precision of ĉ

and to guarantee that the rate of convergence to c is R1/2, it is helpful to have a Gaussian central

limit theorem for ĉ. We know from the Lindeberg-Lévy central limit theorem that a necessary

and sufficient condition for this is that V ar(w) exists, which would allow us to conclude that

√
R (ĉ − c) d→ N(0, V ar(w)).

However, the existence of this quantity is by no means guaranteed.

In a fundamental contribution, Geweke (1989) argues that we should only use importance

sampling in cases where we can prove that V ar(w) exists. However, in practice this is actually

quite difficult to check in large dimensional problems and so many econometrics and statistics

papers have recently been written which, in effect, a priori assume that this condition holds.

See, for example, Hendry and Richard (1991), Danielsson and Richard (1993), Danielsson (1994),

Sandmann and Koopman (1998), Durbin and Koopman (2000), Stephens and Donnelly (2000),

Elerian, Chib, and Shephard (2001) and Durham and Gallant (2002).

In this paper we present a simple diagnostic check for the existence of V ar(w). This will be

based on the application of extreme value theory1. We will apply it to the analysis of financial

econometric models and show that sometimes this variance does not exist.
1We should note that extreme value theory has been applied in the context of financial economics and insurance

in order to determine the thickness of the tail of financial returns. This can have potential application in computing
various measures of risk. References to this literature include Embrechts, Kluppelberg, and Mikosch (1997, Section
6.5.2) and Danielsson and de Vries (1997). The application of the theory is much harder in that context for the
i.i.d. assumption certainly does not hold. The inference problem we face here is much simpler.
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In Section 2 we review the extreme value theory that is appropriate for checking the assump-

tion that V ar(w) exists, while we go on to discuss the statistical estimation of tail indexes for

extremes, while Section 3 reports the results from some experiments we have conducted based

on this approach. Section 4 illustrates the approach we are advocating with an application from

financial econometrics. Section 5 concludes.

2 Extreme value theory and inference

2.1 The model and hypothesis

By construction we know from (2) that the weights {wj} are i.i.d. and that E(w) = c. The key

issue is whether the variance exists, which really means we need to know the behaviour of the

weights in their right hand tail. To study the tail behaviour we use extreme value theory.

Smith (1987) argues that if we have an i.i.d. {wj} population then as a threshold value u > 0

increases, the limit distributions of the random variables over this threshold will be generalised

Pareto. In particular, define these (unordered) large weights minus the threshold u as Z1, ..., Zn,

then the asymptotic density of these excesses is

f(z) =
1
β

(
1 + ξ

z

β

)− 1
ξ
−1

, z ∈ D(ξ, β) > u, β > 0. (3)

Here

D(ξ, β) =


[0,∞), ξ ≥ 0,

[0,−β/ξ], ξ < 0.

Importantly for this model only 1/ξ moments exist. This implies that we can determine the

number of moments that the weights have by focusing on 1/ξ. Thus we must be interested in

knowing if ξ ≤ 1/2, while we know by construction of the importance sampler that ξ ≤ 1. The

cases of ξ < 0 deals with situations where the {wj} have some upper bound. This is of some

relevance in importance sampling in the case of the sampler being bounded, that is

f(x) ≤ kg(x), (4)

for some finite choice of k > 0. Then if (4) is true for x ∈ Ω, the support of the {wj} will be

bounded and the existence of all moments is guaranteed. This is, in practice, quite unusual.

Most of the cases of real interest are where the sampler is not bounding, so ξ ∈ [0, 1].

Formally the hypotheses we will be interested in deciding between is

H0 : ξ ≤ 1
2
, and H1 : ξ >

1
2
.
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The null will imply the existence of the variance, the alternative will deny this2. In practice it

is helpful to make the null a point hypothesis (see, for example, Cox and Hinkley (1974, pp.

331–334)), so making the comparison between

H0 : ξ =
1
2
, and H1 : ξ >

1
2
. (5)

As we have a parametric model for the weights over a threshold we will use a likelihood function

to carry out the testing3. This approach to inference is often called the peak over threshold

method (see, for example, Embrechts, Kluppelberg, and Mikosch (1997)). We will study the

behaviour of the score and likelihood ratio tests of the hypothesis. Their behaviour is regular

due to the standard asymptotics of the maximum likelihood estimators of parameters ξ and β.

2.2 Estimation and Wald test

The log-likelihood for a sample z1, ..., zn over the threshold u equals

log f(z; λ) = −n log β −
(

1 +
1
ξ

) n∑
i=1

log xi, (6)

where xi = 1 + ξβ−1zi. Maximum likelihood estimation of parameter vector λ = (ξ, β)′ is

discussed in Smith (1987) and can be based on the standard method of Fisher scoring which

relies on the score vector

s =

 sξ

sβ

 =
∂ log f(z; λ)

∂λ
=

 ξ−2 ∑n
i=1 log xi − (1 + ξ−1)β−1 ∑n

i=1 zi/xi

−nβ−1 + (1 + ξ)β−2 ∑n
i=1 zi/xi

 , (7)

and the expected information matrix nI where

I =
1

(1 + 2ξ) (1 + ξ)

(
1 + ξ −1
−1 2

)
. (8)

A sensible starting value for ξ is 0.5, the one specified by H0, while for β it can be constructed

using the expected value of z given by

E(z) =
β

ξ2

Γ(ξ−1 − 1)
Γ(1 + ξ−1)

= 2β, for ξ = 0.5.

So iterations can start at λ = 0.5(1, z̄)′ where z̄ = n−1 ∑n
i=1 zi.

The asymptotic distribution of the maximum likelihood estimator λ̂ is given by

√
n

(
λ̂ − λ

)
d→ N

(
0, I−1

)
where I−1 = (1 + ξ)

(
2 1
1 1 + ξ

)
. (9)

2It is also possible to setup the hypothesis in the opposite manner, with the null that ξ > 1/2 and the
alternative that ξ ≤ 1/2. In our treatment this will not lead to different diagnostic test statistics, although clearly
the critical values will change.

3An alternative to this approach is to use the Hill estimator, which has the advantage that it has a closed form.
However, it is well known that this estimator behaves in an unreliable manner in some important situations.
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Smith (1987) has shown that likelihood inference is regular for this problem as long as ξ > −1/2.

This covers the null hypothesis value H0 : ξ = 1
2 and all the values under the alternative.

Once the maximum likelihood estimator of λ is found the Wald test can be computed to test

the null hypothesis (5). For our purposes it is appropriate to compute an asymptotic signed

t-test, that is

t =
√

n

3

(
ξ̂ − 1

2

)
. (10)

The null hypothesis is rejected when the t-test takes a large positive value compared to a standard

normal.

2.3 Estimation under null hypothesis and score test

The maximum likelihood estimator of β under the null hypothesis of ξ = 0.5 can be found by

univariate Fisher scoring. The score value of β is given by

s0
β = −n

β
+

3
2
β−2

n∑
i=1

zi/xi,

= nβ−1 (3z̄∗ − 1) ,

where
n∑

i=1

zi/xi = 2βnz̄∗, z̄∗ =
1
n

n∑
i=1

zi

2β + zi
, for ξ = 0.5.

The expected information in the sample is 2n/3, under the null hypothesis. As in the previous

section, we can take 0.5z̄ as the initial value for β. After convergence the restricted estimate of

β is obtained which we will denote by β̂0.

The one-sided score statistic will be used for testing the null hypothesis as this will be

computationally simple. It is based on the score value of ξ under the null hypothesis and is

given by

s0
ξ = 4

n∑
i=1

log xi − 3β−1
n∑

i=1

zi/xi

= 4
n∑

i=1

log
(

1 +
zi

2β

)
− 6nz̄∗, for ξ = 0.5.

This score value for the null hypothesis (5) is a function of β and it can be evaluated when β

is replaced by its (restricted) maximum likelihood estimator β̂0. We know from the results of

Smith (1987) that

s∗ξ =
1√
2n

s0
ξ

d→ N(0, 1), (11)

which gives a very simple test. We reject the H0 : ξ = 1
2 when ŝ∗ξ is significantly positive and

where ŝ∗ξ is s∗ξ with β replaced by β̂0.
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2.4 Likelihood ratio test

When estimation of λ has taken place under the constraint that ξ ≥ 0.5, to deliver λ̃, together

with estimation under the null hypothesis, the likelihood ratio statistic can also be used to test

the null:

LR = 2
{
log f(z; λ̃) − log f(z; β̂0, ξ = 0.5)

}
.

Of course, the null is on the boundary next to the alternative and so the

LR
d→ 0.5

(
χ2

0 + χ2
1

)
, under H0.

That is there is a 0.5 probability that the likelihood ratio statistic will be zero (as ξ̂ will be

negative) and the rest of the time the statistic will have a χ2
1 distribution (e.g. Chernoff (1954)

and Gourieroux, Holly, and Monfort (1981)).

3 Some experiments

To check the effectiveness of extreme value theory in practice for testing the assumptions behind

importance sampling we consider two experiments. The first is based on sampling from a normal

density to approximate a normal density with a different variance. Another experiment is derived

from the binomial example considered by Geweke (1989, §5.1).

3.1 Normal density experiment

We take f(x) to be the normal density N(0, 1) and the importance sampling density g(x) is

N{0, (1 + ε)−1} where ε is positive number. Thus for this problem c = 1 in (1). The question is

whether the variance of the weight function exists? The weight function is given by

w(x) =
f(x)
g(x)

=
1√

1 + ε
exp

(
ε

2
x2

)
,

which obviously has Ew(x) = 1, while

Ew(x)2 =
1√
2π

√
1 + ε

1 + ε

∫ ∞

−∞
exp

(
εx2

)
exp

(
−1

2
x2 (1 + ε)

)
dx

=
1√
2π

1√
1 + ε

∫ ∞

−∞
exp

(
−1

2
x2 (1 − ε)

)
dx,

which is bounded only if ε < 1. Hence the variance of the weight function of the importance

sampler will not exists if ε ≥ 1, which implies the central limit theory for importance samplers

will not hold in that range of cases.

In Table 1 we present the diagnostic tests and they show that for small values of ε importance

sampling is valid while for larger values higher moments do not exist for the importance weights.
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R = 1, 000 R = 10, 000

score t LR
√ ̂V ar(w) score t LR

√ ̂V ar(w)
10% of w
ε = 0.1 -0.6 -1.6 0 0.110 -2.6 -6.4 0 0.113
ε = 0.5 0.3 0.5 0.3 1.81 0.1 0.1 0 2.36
ε = 0.8 1.2 2.1 5.0 8.73 2.9 4.9 30.1 18.4
ε = 1.0 1.9 2.9 11.0 24.6 5.2 8.1 80.7 80.5
ε = 1.2 2.7 2.9 18.1 70.1 7.8 9.1 150 369
5% of w
ε = 0.1 -0.8 -1.9 0 0.115 -2.2 -5.4 0 0.120
ε = 0.5 -0.2 -0.4 0 2.22 -0.4 -0.8 0 3.05
ε = 0.8 0.4 0.6 0.6 11.4 1.5 2.7 9.1 25.5
ε = 1.0 0.9 1.3 2.5 33.0 3.1 5.0 30.8 113
ε = 1.2 1.5 2.0 5.6 95.6 4.9 6.5 64.0 520
1% of w
ε = 0.1 -0.5 -0.9 0 0.114 -1.0 -2.4 0 0.132
ε = 0.5 -0.3 -0.9 0 2.99 -0.3 -0.5 0 5.31
ε = 0.8 -0.1 -0.5 0 17.9 1.2 0.9 1.2 52.4
ε = 1.0 -0.0 -0.1 0 56.0 1.3 1.9 4.7 242
ε = 1.2 -0.1 0.3 0.1 171 2.0 2.8 10.4 1137

Table 1: Likelihood based tests for the null of the existence of the variance of the importance
sampler for normal densities. Based on 1,000 and 10,000 samples using 10%, 5% and 1% of
these in the extreme value analysis. Score and t-tests are both standard normal, with the test
being rejected for large positive values. LR test has a 0.5

(
χ2

0 + χ2
1

)
null. It is rejected for large

values. The 95% critical values are 1.65, 1.65 and 2.69, respectively.

The Table shows that for the test statistics to be effective, we require a simulation sample size

R that is sufficiently large (say, 10, 000) and from which a small fraction (say, 1%) is used in the

extreme value testing.

3.2 Geweke’s binomial experiment

Here we reanalyse a simple example constructed by Geweke (1989) which illustrates the possi-

bility that importance samplers behave poorly. Suppose we have a sample of size n of Bernoulli

random variables y = (y1, ..., yn)′ with Pr(yi = 1) = θ. Assume a uniform prior for θ and write

y• =
∑n

i=1 yi, then the posterior for θ is

f(θ|y) =
Γ (n + 2)

Γ (y• + 1) Γ (n − y• + 1)
θy• (1 − θ)n−y• , θ ∈ [0, 1],

which implies the marginal likelihood is

f(y) =
∫

f(y|θ)f(θ)dθ =
f(y|θ)f(θ)

f(θ|y)
=

1
n + 1

.
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The maximum likelihood estimator of θ is θ̂ = y•/n while
√

n
(
θ̂ − θ

)
d→ N(0, θ(1 − θ)) as

n → ∞. A direct application of this theory suggests the important sampler:

g(θ|y) =
1√

2πθ̂(1 − θ̂)/n
exp

[
−n

2

(
θ̂ − θ

)2
/

{
θ̂(1 − θ̂)

}]
.

The corresponding weight function is

w(θ) =
f(θ|y)
g(θ|y)

,

as we are going to sample θj i.i.d.∼ g(θ|y).

In Table 2 we report the diagnostics for case A with θ = 0.5 and for case B with θ = 0.7.

The test statistics confirm the findings of Geweke and show that case B with θ = 0.7 lead to

an importance density that generates weights for which a variance exists. However, for case A

with θ = 0.5 the test statistics give evidence that the variance does not exist.

R = 1, 000 R = 10, 000

n y• θ score t LR

√ ̂V ar(w)
×10−5

score t LR

√ ̂V ar(w)
×10−5

10% of w
Case A 69 6 .5 6.9 2.9 49.6 2.6 22.5 9.1 545 3.4
Case B 71 54 .7 -2.1 -2.9 0 1160 -7.1 -9.1 0 1168
5% of w
Case A 69 6 .5 5.5 2.0 31.5 3.6 14.7 6.5 259 4.7
Case B 71 54 .7 -1.6 -2.0 0 317 -5.0 -6.5 0 290
1% of w
Case A 69 6 .5 1.7 0.9 3.87 7.4 3.0 2.9 21.0 10.1
Case B 71 54 .7 -0.8 -0.9 0 5.4 -2.4 -2.9 0 11.8

Table 2: Likelihood based tests for the null of the existence of the variance of the importance
sampler for Geweke’s binomial problem. Score and t-tests are both standard normal, with the
test being rejected for large positive values. Note the standard deviation of w is given ×10−5.
LR test has a 0.5

(
χ2

0 + χ2
1

)
null. It is rejected for large values. The 95% critical values are 1.65,

1.65 and 2.69, respectively.

3.3 Graphical diagnostics

Our proposed test statistics do not necessarily give the complete picture and do not provide

strict guarantees for a successful importance sampling procedure. Graphical diagnostics play a

complementary role in this respect. We will illustrate this using the two experiments of this

Section.

A graph of the largest values of the weights gives an indication of the seriousness of the out-

liers that indicates the non-existence of a variance. The non-largest weights can be represented
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via a histogram. This is an effective way to graphically present all weights. Further the recursive

plot of the standard deviation of weights can show the impact of large weights on the variance

estimate. As the sample increases the variance should converge to a constant if it exists. The

three graphs for the normal density experiment with ε = 0.1 are presented in Figure 1 together

with the graphs for cases A and B of Geweke’s binomial experiment. The diagnostic plots are

based on an importance simulation sample of R = 100, 000. The first row-panel of Figure 1
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Figure 1: Top row corresponds to importance sample weights for the Gaussian problem with
ε = 0.1. Middle row has corresponding results for Case A from the Geweke experiment, while
the bottom row has the results for Case B. The left hand side pictures are of the largest 100
weights, the middle pictures are a histogram of all the other weights and the right hand side
shows a recursive estimator of the variance of the weights.

provides further evidence that the importance sampler behaves well for the normal experiment

with ε = 0.1. The second row-panel present plots that are consistent with the test statistics for

case A of the binomial experiment. Some weights can be regarded as outliers and they have a

huge effect on the computation of the sample variance indicating that the importance sampling

procedure does not behave well. The bottom row-panel also confirm the conclusion for case B

that a variance for the weight function exists. However, the weight function is badly behaved

as we can see from the bi-modal histogram and from the recursive plot of standard deviation
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that is not converging smoothly. This last experiment makes the case that graphical procedures

should also be considered for the task of diagnosing importance sampling.

4 Illustration: stochastic volatility

We investigate the effectiveness of our proposed diagnostic procedures using a class of stochastic

volatility (SV) models (see Taylor (1994), Shephard (1996) and Ghysels, Harvey, and Renault

(1996) for reviews of the associated literature). Various approaches exist for applying importance

sampling to SV models such as the ones of Danielsson (1994), Sandmann and Koopman (1998)

and Durham and Gallant (2002). Here we take the approach of Shephard and Pitt (1997) and

Durbin and Koopman (1997).

4.1 Importance sampling for stochastic volatility models

A flexible discrete time stochastic volatility model for an univariate time series of returns yt is

given by
yt = µ + σε exp(αt/2)(ρηt +

√
1 − ρ2εt),

αt+1 = φαt + σηηt, α1 ∼ N{0, σ2
η/(1 − φ2)},

(12)

for t = 1, . . . , T , where the disturbances εt and ηt are serially and mutually independent series

of disturbances with zero means and unit variances, independent of α1. The disturbances ηt are

assumed normally distributed for t = 1, . . . , T . The mean of the returns is given by µ. The

inclusion of the log-volatility disturbance ηt in the measurement equation introduces correlation

between the two equations of model (12) allowing for a leverage effect in return series (e.g.

Black (1976) and Nelson (1991)). This particular formulation ensures that |ρ| < 1. The degree

of volatility persistence is measured by the autoregressive parameter φ and the parameter ση is

the standard deviation of the disturbances of the autoregressive process for αt. The initial value

of α1 is a draw from the unconditional distribution of αt.

The model given in (12) can be thought of as Euler discretisation of a continuous time SV

model where the spot volatility follows a log-normal Ornstein-Uhlenbeck process (e.g. Hull and

White (1987)).

The likelihood function f(y) of the SV model is not available analytically. Instead it is in

the form of the unsolved integral

f(y) =
∫

f(y|α)f(α)dα,

where y is playing an inactive role in the integral. Thus it is of the form of the usual importance

sampling problem (1). It is computed as indicated below (1) with the importance sampler g(α)
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being the Laplace approximation to the posterior of α1, . . . , αT given the data y1, . . . , yT ; see,

for example, Gelman, Carlin, Stern, and Rubin (1995, p.306). Then the weight function will be

w(α) =
f(y|α)f(α)

g(α)
.

In the Appendix we give the details of how such an approximation for SV type models is obtained

quickly. We will now proceed to use extreme value theory to check the validity of a central limit

theory based on this importance sampler.

4.2 Data and design of empirical study

In our empirical study we use the return series yt of daily Standard & Poor’s 100 stock index

closures. The historical return series is for the period 2nd January 1990 to 31st December 1999

and was obtained from Datastream. After adjusting the series for holidays, our sample consists

of 2, 516 daily observations. Hence the importance sampling is being carried out over 2, 516

dimensions in this case. The continuously compounded (raw) returns on the stock index are

not adjusted for dividends and they are expressed in percentage terms and therefore given by

yt = 100(lnPt − ln Pt−1) where Pt denotes the closing price of the Standard & Poor’s 100 index

at day t.

The stochastic volatility model requires the estimation of parameter vector

ψ = (µ, φ, ση, σε, ρ)′.

Maximum likelihood estimation is based on numerically maximising the log of the estimated

likelihood function, where the estimation is based on importance sampling. To start the iterative

process of the search for the maximum likelihood estimator, initial values for the parameters are

needed and we have chosen them realistically as

µ = ρ = 0, φ = 0.98, ση = 0.2, σε = 0.6,

The initial parameter vector is referred to as ψ0 and the maximum likelihood estimator of ψ

is referred to as ψ̂. Within the process of maximising the simulated log-likelihood value, we

compute the log-likelihood via importance sampling using R = 1, 000 samples where the same

underlying uniform random variables are used for each likelihood evaluation. The approximate

maximum likelihood estimates and the maximum log-likelihood values are given in Table 3.

4.3 Empirical results: graphical diagnostics

To illustrate our diagnostic procedure, we boost the simulation size to M = 100, 000 and produce

a set of diagnostic graphs. The question we ask is if the variance of the weights exists for ψ = ψ̂,

basing the diagnostic graphics on these i.i.d. 100, 000 samples.
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Stochastic volatility model
without leverage with leverage

µ 0.0713 0.0515
(0.0427 0.0999) (0.0461 0.0960)

φ 0.985 0.980
(0.971 0.992) (0.963 0.989)

ση 0.134 0.160
(0.103 0.174) (0.120 0.211)

σε 0.798 0.799
(0.667 1.047) (0.681 0.936)

ρ -0.485
(−0.612 −0.318)

sim. log lik. -3090.71 -3076.30

Table 3: Maximum simulated likelihood estimates of stochastic volatility parameters. The values
in parentheses give the asymptotic (asymmetric) 95% confidence intervals.

We start by considering the stochastic volatility model without leverage whose estimated

parameters are reported in Table 3 together with their 95% confidence intervals. By taking

the maximum simulated likelihood estimate ψ̂ as fixed, we compute the M importance weights

{wj}. The largest 100 weights are presented in Figure 2 together with a histogram of the

remaining 99, 900 smaller weights. The third graph presents the recursive estimation of the

standard deviation of the weights w1, . . . , wj for j = R + 1, . . . , M with R = 1000 (the number

of weights used for maximum likelihood estimation). The final graph presents estimates of ξ,

together with an asymmetric 95% confidence interval, based on thresholds u which excludes the

smallest 98 + 0.05j percent of the weights for j = 1, . . . , 30.

These diagnostic graphs provide evidence that the importance sampler is unreliable in this

case, for they indicate a maximum likelihood estimate of ξ which is larger than 0.5. Thus the

variance of the weights is either not existing or close to not existing. This result is in line with

the more informal assessment given in the jumpy plot of Figure 2(iii). This records the recursive

variance estimator. Taken together, these results point towards the conclusion that the use of

standard asymptotics to measure the uncertainty of the importance sampler’s estimate of the

log-likelihood function is problematic in this case.

We now turn our attention to the empirically more interesting stochastic volatility model

with leverage and look at the diagnostic graphs of the model with estimated parameters. The

estimated parameter values are shown in Table 3 and show a large improvement in the fit of
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Figure 2: Importance sampling diagnostic graphics for SV model without leverage. (i) Largest
hundred weights from an importance sample of M = 100, 000; (ii) histogram of weights excluding
the largest hundred; (iii) recursive standard deviation of weights for j = R + 1, . . . , M ; (iv)
estimated shape parameters (solid line) with 95% confidence intervals (dotted lines) for thirty
different tresholds.

the model. Figure 3 presents the same types of diagnostic graphs as in Figure 2. It is clear

that these graphs indicate a marginally better behaved importance sampler. In particular, the

estimated shapes may provide some evidence that two moments exist in the weight series. When

these diagnostic graphs are compared with the same graphs for the estimated model without

leverage we conclude that the importance sampler for a stochastic volatility model with leverage

is more reliable than the sampler for the model without leverage.

4.4 Empirical results: likelihood-based tests

In Table 4 we present the likelihood tests for the two classes of SV models. The threshold

value u for constructing large weights zi, for i = 1, . . . , n, as defined in §2 is chosen so that

we have n = 1000 large values. The score and t-value statistics are signed tests for the null

hypothesis H0 : ξ = 1
2 ; it means that we suspect that no variance exists for the importance

weights when these tests have significant positive values. Both tests are asymptotically standard
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Figure 3: Importance sampling diagnostic graphics for SV model with leverage. (i) Largest 100
weights; (ii) histogram of weights excluding the largest hundred; (iii) recursive standard deviation
of weights for j = R + 1, . . . , M ; (iv) estimated shape parameters with 95% confidence intervals
for thirty different thresholds.

normal distributed, so having a 95% critical value of 1.64. The LR test follows an asymptotic

0.5
(
χ2

0 + χ2
1

)
behaviour with the 95% critical value 2.69.

The results given in Table 4 are more or less consistent across the choice of statistic. For the

stochastic volatility model without leverage the results are poor with all the statistics strongly

rejecting the existence of a variance. This difficulty is somewhat reduced when the stochastic

volatility model is taken with leverage. However the statistics suggest that the procedure is still

problematic.

5 Conclusion

In this note we have suggested using extreme value theory to assess the validity of assuming

the existence of a variance in the importance sampling weights. This is relatively easy to

carry through in practice, providing a formal justification for the use of importance sampling in

wider situations than those derived by Geweke (1989) who required the researcher to prove the

existence of V ar(w). We have illustrated the methods on the problem of estimating stochastic

14



Stochastic volatility model
without leverage with leverage

score 3.627 1.174
t-value 3.378 2.124
LR 17.134 5.807

Table 4: Likelihood based tests for the null of the existence of the variance of the importance
sampler for stochastic volatility models estimated by maximum simulated likelihood. Score and
t-tests are both standard normal, with the test being rejected for large positive values. LR test
has a 0.5

(
χ2

0 + χ2
1

)
null. It is rejected for large values. The 95% critical values are 1.65, 1.65

and 2.69, respectively.

volatility models. This involved integrating in many thousands of dimensions.
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Appendix

The normal importance density g(y|α) for model (12), with

y = (y1, . . . , yT )′ and α = (α1, . . . , αT )′,

is obtained by equating the first and second derivatives of the conditional log-densities log f(y, α)

and log g(y, α) with respect to α as in Shephard and Pitt (1997). Thus g will be a Laplace

approximation to f . The joint density of the stochastic volatility model with leverage can be

written f(y, α) = f(α)f(y|α) with log f(y|α) =
∑n

t=1 ft and

ft = −1
2

log 2π − 1
2

log σ2
∗ −

αt

2
− exp(−αt)

{yt − µ − ρ exp(αt/2)σεηt}2

2σ2∗
,

where σ2∗ = σ2
ε(1 − ρ2) for t = 1, . . . , T .

The importance joint density g(y, α) can be represented in terms of the additive model

y = m + α + ω, α ∼ N(0, Ω), ω ∼ N(0, Σ), (13)

where variance matrix Ω has the well-known band structure implied by an autoregressive process

of order one which is the model for αt. The T × 1 vector m and T × T variance matrix Σ are
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chosen such that

∂ log f(y|α)
∂α

=
∂ log g(y|α)

∂α
,

∂2 log f(y|α)
∂α∂α′ =

∂2 log g(y|α)
∂α∂α′ . (14)

The set of equations for m and Σ in terms of α are solved iteratively. In the case of the stochastic

volatility model with no leverage, the variance matrix Σ is diagonal whereas it is tridiagonal in

the case of the model with leverage since ηt in the first equation of (12) is a function of αt+1

and αt. It turns out that the densities are log-concave in α and this ensures that Σ is always

positive definite.

The resulting equations for m and Σ can be solved out using an iterative procedure for which

new ‘trial’ values for α are used. In particular, for each iteration we compute E(α|y) for which

an expression is obtained by exploiting the properties of the multivariate normal distribution

applied to model (13). We have

α̂ = E(α|y) = ΩΣ−1
y (y − m), where Σy = V ar(y) = Ω + Σ,

and, given the special structures of both matrices Ω and Σ, this can be computed efficiently by

an order T computation. Note that Ω−1 is a tridiagonal matrix.

Importance sampling requires draws from the multivariate conditional density g(α|y) which

in our case is also normal. Thus we can draw directly from

αj ∼ N(α̂, V ), where V = V ar(α|y) = Ω − ΩΣ−1
y Ω.

Such draws can be generated by scaling independent N(0, 1) realisations. The special struc-

tures of the matrices involved ensure that the generation of importance simulations can be

implemented as an order T computation.
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