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Abstract

This paper provides limit distribution results for power variation, that is sums of powers
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processes. Special cases of these processes are stochastic volatility models used extensively
in financial econometrics.
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1. Introduction

In Barndorff-Nielsen and Shephard (2003) limit distribution results were derived for quantities
of the form

n∑
j=1

|X(jδ) − X((j − 1)δ)|r, (1.1)

where X denotes a certain type of semimartingale, r is a positive number and nδ = t for some
time t > 0. The theory is based on δ ↓ 0. More specifically, X was assumed to be a special
semimartingale with canonical decomposition of the form

X = A + H • W, (1.2)

where • indicates stochastic integration, W is Brownian motion, A and H are assumed to be
jointly independent of W and to satisfy some rather mild regularity conditions, specified in
Section 3 below. We refer to (1.1) and similar quantities as power variations. From the applied
point of view the results in question provide, in particular, a versatile basis for drawing inference
on the process H, which expresses the volatility of X. This is discussed in Barndorff-Nielsen and
Shephard (2002a), Barndorff-Nielsen and Shephard (2003) and Barndorff-Nielsen and Shephard
(2002b). See also Shiryaev (1999, p. 349-350) who mentions interest in the limits of sums of
absolute returns.

The present paper extends the results mentioned in several directions (assuming for simplicity
that A = 0). We consider more general time changes than those implicit in (1.2) (via the Dambis-
Dubins-Schwarz theorem), as well as nonequidistant partitions of [0, t]. Furthermore, settings
where instead of Brownian motion W in (1.2) we have a stable process will be discussed.

The structure of the paper is as follows. In Section 2 we review various elementary inequalities
involving sums, and remind our selves of the definitions of power variation and time-change.
Section 3 reviews the existing literature on power variation and stochastic volatility models.
The latter constitute, in fact, an important subclass of the semimartingales. In Section 4 we
establish some consequences of the general central limit theory which will be useful further
on. Section 5 is the core of our paper. It is where we derive new limit law results for power
variation in the case of Brownian motion which is time-changed. This Section also gives our
new treatment of power variation for unequally spaced time intervals. In Section 6 we extend
part of the above work to cover the situation where the Brownian motion is generalised to be a
symmetric α-stable process. Finally, Section 7 provides a discussion of related work.

2. Variations

Throughout this paper, r denotes a positive number.

2.1. Some elementary inequalities

For later use we here list a few elementary inequalities.

(i) If a1, ..., an are nonnegative then (see Hardy, Littlewood, and Polya (1959, p. 30))


 n∑

j=1

ar
j




1/r

(2.1)

is decreasing in r (unless all but one of a1, ..., an is 0).
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(ii) Minkovsky’s inequality If a1, ..., an and b1, ..., bn are nonnegative then for r > 1
 n∑

j=1

(aj + bj)r




1/r

≤

 n∑

j=1

ar
j




1/r

+


 n∑

j=1

br
j




1/r

(2.2)

while for r < 1 
 n∑

j=1

(aj + bj)r




1/r

≥

 n∑

j=1

ar
j




1/r

+


 n∑

j=1

br
j




1/r

. (2.3)

(iii) If r ≥ 1 then, for arbitrary real a1, ..., an and b1, ..., bn,∣∣∣∣∣∣∣

 n∑

j=1

|aj + bj |r



1/r

−

 n∑

j=1

|bj |r



1/r
∣∣∣∣∣∣∣ ≤


 n∑

j=1

|aj |r



1/r

. (2.4)

To prove the latter inequality, suppose first that r = 1. For a and b real we have

|a + b| − |b| =




a for a ≥ 0, b ≥ 0
a for a < 0, b ≥ 0, a + b ≥ 0

−a − 2b for a < 0, b ≥ 0, a + b < 0
a + 2b for a > 0, b ≤ 0, a + b ≥ 0
−a for a > 0, b ≤ 0, a + b < 0
−a for a ≤ 0, b ≤ 0

implying ||a + b| − |b|| ≤ |a|.
Next, for r > 1 we find by (2.2)

 n∑
j=1

|aj + bj |r



1/r

≤

 n∑

j=1

(|aj | + |bj |)r




1/r

≤

 n∑

j=1

|aj |r



1/r

+


 n∑

j=1

|bj |r



1/r

so that 
 n∑

j=1

|aj + bj |r



1/r

−

 n∑

j=1

|bj |r



1/r

≤

 n∑

j=1

|aj |r



1/r

. (2.5)

On the other hand,
 n∑

j=1

|bj |r



1/r

=


 n∑

j=1

|aj + bj − aj |r



1/r

≤

 n∑

j=1

(|aj + bj | + |aj |)r




1/r

≤

 n∑

j=1

|aj + bj |r



1/r

+


 n∑

j=1

|aj |r



1/r

,
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implying that 
 n∑

j=1

|bj |r



1/r

−

 n∑

j=1

|aj + bj |r



1/r

≤

 n∑

j=1

|aj |r



1/r

(2.6)

and (2.5) and (2.6) together give (2.4).

2.2. Power variation

Let ∆ denote a subdivision 0 = t0 < t1 < · · · < tn = t of [0, t] and let δj = tj − tj−1 and
|∆| = max δj . When considering a sequence of such subdivisions ∆ we say that the sequence is
balanced if max δj/ min δj is bounded above and ε-balanced, ε ∈ (0, 1), if max δj/(min δj)ε → 0
as |∆| → 0. Note that here and in the following we usually have in mind a single, generally
unspecified, sequence of subdivisions ∆ with |∆| → 0; however, for notational simplicity, we
do not indicate this by attaching a sequence index to ∆. Clearly, if ∆ is balanced then it is a
fortiori ε-balanced for every ε ∈ (0, 1).

We consider arbitrary real functions f and g on the interval [0, t] and introduce the notation

[f∆][r] =
∑

|f (tj) − f(tj−1)|r (2.7)

where the sum is over j = 1, ..., n. We call [f∆][r] the r-th order power variation of f relative
to ∆, or r-tic variation for short. In the special case where the subdivision ∆ is equidistant,
whence δj = δ for all j, we will write fδ instead of f∆, etc. Thus when δ occurs as an index
the subdivision is understood to be equidistant. Furthermore, we write [f ][r] for the r-th order
sup-variation or sup-r-variation1 of f , that is

[f ][r] = sup
∆∈D

∑
|f (tj) − f (tj−1)|r (2.8)

where D denotes the class of all possible subdivisions of [0, t]. When we wish to indicate the
dependence on t we shall write [f∆][r](t) instead of [f∆][r], etc.

For r ≥ 1 we have, by the inequalities (2.2) and (2.4), that(
[(f + g)∆][r]

)1/r ≤
(
[f∆][r]

)1/r
+
(
[g∆][r]

)1/r

and ∣∣∣∣([(f + g)∆][r]
)1/r −

(
[f∆][r]

)1/r
∣∣∣∣ ≤ ([g∆][r]

)1/r
.

It is furthermore convenient to generalise the above setup to allow for weighted power vari-
ations, as follows. For B a function of locally bounded variation we let

[f∆][B,r] =
∑

|f (tj) − f(tj−1)|r (B(tj) − B(tj−1)).

In particular,
[fδ][B,r] =

∑
|f (jδ) − f ((j − 1)δ)|r (B(jδ) − B((j − 1)δ)).

Finally, when f ≥ 0, we use the notation

f∗(t) =
∫ t

0
f(s)ds (2.9)

and, more generally,

f r∗(t) =
∫ t

0
f r(s)ds. (2.10)

1We adopt this term rather than the more usual r-variation, for clarity in the context of the present paper.
We will refer to some of the literature on r-variation in Section 7 of this paper.
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2.3. Time-change

We define a time-change to be a non-decreasing function T : [0,∞) → [0,∞) with T (0) = 0 and
T (t) → ∞ as t → ∞.

For an arbitrary function f (as above) and time-change T we have

[(f ◦ T )∆][r] = [fT (∆)]
[r] ◦ T

(where ◦ means composition of mappings) or, more specifically,

[(f ◦ T )∆][r](t) = [fT (∆)]
[r](T (t))

where T (∆) is the subdivision 0 = T (t1) < · · · < T (tn) = T (t).
Henceforth, unless otherwise mentioned, we assume that T is continuous and strictly in-

creasing. Then T is uniformly continuous on any compact interval and |∆| → 0 will imply
|T (∆)| → 0. Hence, in wide generality it will hold that

[(f ◦ T )][r] = [f ][r] ◦ T. (2.11)

3. Review of power variation for SV models

Let X denote an arbitrary semimartingale, with decomposition X = A + M into a process of
bounded variation A and a local martingale M . Then X is said to be a stochastic volatility
semimartingale model, or an SVSM model, provided M is of the form

M = H • W

where W is a Brownian motion and H is a nonnegative process representing the stochastic
volatility.

For reference below we introduce the following three conditions on H and A.

(R) The processes A and H are pathwise locally Riemann integrable (hence, in particular,
locally bounded).

(V) The volatility process H is (pathwise) locally bounded away from 0 and has, moreover,
the property that for some γ > 0

lim
δ↓0

δ1/2
m∑

j=1

|Hγ(ηj) − Hγ(ξj)| = 0 (3.1)

for any sequences ξj = ξj(δ) and ηj = ηj(δ) satisfying

0 ≤ ξ1 ≤ η1 ≤ δ ≤ ξ2 ≤ η2 ≤ 2δ ≤ · · · ≤ ξn ≤ ηn ≤ t.

(M) The mean process A satisfies (pathwise)

lim
δ↓0

max
1≤j≤n

δ−1|A(jδ) − A((j − 1)δ)| < ∞.

Note When condition (R) holds the equality (3.1) is satisfied for all positive γ if and only
if it holds for one such γ. �

In Barndorff-Nielsen and Shephard (2003) the following result was proved (recall the nota-
tion (2.10)).
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Theorem 3.1 Suppose the semimartingale X = A + H • W satisfies conditions (R), (V)
and (M), and assume that the pair of processes (A, H) is independent of the Brownian motion
W .

Then, for any t > 0 and δ ↓ 0, we have

δ1−r/2[Xδ][r](t)
p→ µrH

r∗(t)

where µr = E{|u|r} and u ∼ N(0, 1).
Furthermore, if either r ≥ 1

2 or A = 0 then, additionally

δ1−r/2[Xδ][r](t) − µrH
r∗(t)

δ1−r/2
√

µ−1
2r vr[Xδ][2r](t)

law→ N(0, 1) (3.2)

where vr = Var{|u|r} is the variance of |u|r. �

Thus, in particular, we have that

[Xδ][2](t) − H2∗(t)√
2
3 [Xδ][4](t)

law→ N(0, 1) (3.3)

and
δ1/2[Xδ][1](t) −

√
2/πH∗(t)√

(1 − 2/π)δ[Xδ][2](t)
law→ N(0, 1). (3.4)

In Section 5 we will extend these results (assuming for simplicity that A = 0), by using a
line of argument different from that applied in Barndorff-Nielsen and Shephard (2003). As a
preliminary to this, the next Section lists some Central Limit Theory results.

Remark Relation (3.2) may be rewritten as

δ1−r/2µ−1
r [Xδ][r](t) − Hr∗(t)

δ1/2
√

µ−2
r νrµ

−1
2r δ1−r[Xδ][2r](t)

law→ N(0, 1).

Here,
µ−1

2r δ1−r[Xδ][2r](t)
p→ H2r∗(t)

so that
δ1−r/2µ−1

r [Xδ][r](t) − Hr∗(t)

δ1/2
√

µ−2
r νrH2r∗(t)

law→ N(0, 1).

In other words, δ1−r/2µ−1
r [Xδ][r](t)−Hr∗(t) follows asymptotically a mixed normal distribution.

�

4. Some Central Limit Theory results

We shall need the following special cases of the general central limit theory.
Let yn1, ..., ynkn (n = 1, 2, ..., with kn → ∞ as n → ∞) be a triangular array of independent

random variables and let yn = yn1 + · · · + ynkn .
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4.1. Asymptotic normality

Theorem 4.1 (Gnedenko and Kolmogorov (1954, p. 102-103)) Suppose that E{ynj} = 0 for

all n and j and that Var{yn} = 1 for all n. Then yn
law→ N(0, 1) if and only if for arbitrary γ > 0

kn∑
j=1

E{y2
nj1(γ,∞)(|ynj |)} → 0. (4.1)

Corollary 4.1 Suppose that ynj is of the form ynj = cnjxnj where the cnj are real con-
stants and the xnj are independent copies of a random variable x that has mean 0 and variance
1. If c2

n1 + · · · + c2
nkn

= 1 and cn = maxj cnj → 0 as n → ∞ then yn converges in law to the
standard normal distribution N(0, 1). �

Proof In the present case

kn∑
j=1

E{y2
nj1(γ,∞)(|ynj |)} =

kn∑
j=1

c2
njE{x21(γ,∞)(|cnjx|)}

≤ E{x21(c−1
n γ,∞)(|x|)} → 0

and hence Theorem 4.1 applies. �

4.2. Probability limit results

Theorem 4.2 Degenerate Convergence Criterion (Loève (1977, p. 329)) We have that yn
p→ 0

and the uniform asymptotic neglibility condition is satisfied if and only if for every ε > 0 and
for some γ > 0

kn∑
j=1

P{|ynj | ≥ ε} → 0 (4.2)

kn∑
j=1

E{ynj1(−γ,γ)(ynj)} → 0 (4.3)

and
kn∑
j=1

(
E{y2

nj1(−γ,γ))(ynj)} − E{ynj1(−γ,γ)(ynj)}2
)→ 0 (4.4)

for n → ∞. �

Now, let xnj , n = 1, 2, ..., j = 1, 2, ..., kn be independent copies of a random variable x having
distribution function F and mean 0, suppose that cni are arbitrary positive reals and let

ynj = cnjxnj

and yn = yn1 + · · · + ynkn .

Corollary 4.2 Suppose that x has mean 0, let cn = maxj cnj and assume that, as n → ∞,

cn → 0 (4.5)

knP{|x| ≥ c−1
n ε} → 0 (4.6)
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sup
n

kn∑
j=1

cnj < ∞ (4.7)

and, for some γ > 0,

cn

∫ c−1
n γ

−c−1
n γ

ξ2dF (ξ) → 0. (4.8)

Then yn
p→ 0. �

Proof In the present setting the conditions of Theorem 4.2 take the form

kn∑
j=1

P{|x| ≥ c−1
nj ε} → 0 (4.9)

kn∑
j=1

cnj

∫ c−1
nj γ

−c−1
nj γ

ξdF (ξ) → 0 (4.10)

and
kn∑
j=1

c2
nj


∫ c−1

nj γ

−c−1
nj γ

ξ2dF (ξ) −
(∫ c−1

nj γ

−c−1
nj γ

ξdF (ξ)

)2

→ 0. (4.11)

The first of these conditions is implied by (4.5) and (4.6). Next, since E{x} = 0 and cn → 0,

∫ c−1
nj γ

−c−1
nj γ

ξdF (ξ) → 0

uniformly in j. Combined with (4.7) the latter entails (4.10) and also

kn∑
j=1

c2
nj

(∫ c−1
nj γ

−c−1
nj γ

ξdF (ξ)

)2

→ 0.

Finally (4.8) gives

kn∑
j=1

c2
nj

∫ c−1
nj γ

−c−1
nj γ

ξ2dF (ξ) ≤ cn

∫ c−1
n γ

−c−1
n γ

ξ2dF (ξ)
kn∑
j=1

cnj → 0.

�

Corollary 4.3 Suppose that x has mean 0 and finite variance and assume that

cn → 0 (4.12)

knP{|x| ≥ c−1
n ε} → 0 (4.13)

sup
n

kn∑
j=1

cnj < ∞. (4.14)

Then yn
p→ 0. �

Proof Condition (4.8) follows from the assumed finiteness of Var{x}. �
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5. Power variation and time changed Brownian motion

Our focus in this Section is on time changed Brownian motion, that is we are considering local
martingales of the form

X = B ◦ T (5.1)

and we aim to generalise the results of Theorem 3.1 to this setting, moreover allowing the
subdivisions ∆ to be non-equidistant.

SV models, as discussed in Section 3 but with A = 0, i.e.

X = H • W (5.2)

fall within this group. In fact, supposing that

H2∗(t) =
∫ t

0
H2(s)ds → ∞

for t → ∞ we have, by the Dambis-Dubins Schwarz theorem2, that the process X = H • W
can be reexpressed a.s. as B ◦ T where T = H2∗ and the Brownian motion B is defined from
X by B = X ◦ ←−T where denotes the inverse of the time change of T . (Of course, T and

←−
T are

themselves determined by X since T = H2∗ = [X], the quadratic variation of X.) It will be
notationally convenient to write Q for H2, and then Q∗ = T .

As before, we assume that the time-change T is continuous and strictly increasing, and ∆
stands for a subdivision 0 = t0 < t1 < · · · < tn = t of [0, t] (with t and n suppressed in
some of the notation). Further, in line with Theorem 3.1, we assume that T is independent of
B, and therefore we may argue conditionally on T . Otherwise put, we may consider T to be
deterministic.

5.1. Limit laws

Letting
T∆j = T (tj) − T (tj−1)

we have

[X∆][r] − µr[T∆][r/2] law=
M∑

j=1

T
r/2
∆j (|uj |r − µr)

where u1, ..., un are independent copies of a standard normal variate u (and, as before, µr =
E{|u|r}). Consequently,

[X∆][r] − µr[T∆][r/2]√
vr[T∆][r]

law= y∆

where y∆ = y∆1 + · · · + y∆n and y∆j = c∆jx∆j with

c∆j =
T

r/2
∆j√

[T∆][r]

and x∆j
law= (|u|r − µr)/

√
vr. By Corollary 4.1 we obtain

Theorem 5.1 Suppose that
2The extension of this theorem to the case where instead of the Brownian motions W and B one considers stable

processes is discussed in the recent paper by Kallsen and Shiryaev (2002), the results of which are summarised in
Section 6 below.
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maxj T
r/2
∆j√

[T∆][r]
→ 0 (5.3)

as |∆| → 0. Then
[X∆][r] − µr[T∆][r/2]√

vr[T∆][r]
law→ N(0, 1). (5.4)

�

Note that the statements in Theorem 5.1 as well as in later propositions refer to a single,
but arbitrary, sequence of subdivisions ∆ with |∆| → 0.

Example 5.1 Suppose r = 1. Then [T∆][r] = T (t) and, since T is uniformly continuous on
[0, t], condition (5.3) holds. More generally, since

(
[T∆][r]

)1/r
is decreasing in r (cf. point (i) in

Subsection 2.1) we have for r ≤ 1 that√
[T∆][r] ≥ T (t)r/2

and hence (5.3) is, in fact, valid for all 0 < r ≤ 1. �

Note that, writing T̂∆ = maxj T∆j we have

maxj T
r/2
∆j√

[T∆][r]
=
{∑

(T∆j/T̂∆)r
}−1/2

.

Example 5.2 Suppose T (s) = sψ for some ψ ∈ (0, 1) and, for simplicity, take t = 1.
Taking ∆ to be the equidistant subdivision determined by tj = j/n we have T̂∆ = n−ψ and∑

(T∆j/T̂∆)r =
∑

{jψ − (j − 1)ψ}r

where for large j
(jψ − (j − 1)ψ)r ∼ ψrj−(1−ψ)r.

Consequently, if (1 − ψ)r > 1 condition (5.3) is not satisfied. In particular, this is the case if
r = 2 and ψ < 1

2 . �

Example 5.3 In case T = Q∗, where

Q∗(s) =
∫ s

0
Q(u)du

for some positive Riemann integrable function Q on [0, t], we have

Q ≤ ∆−1
j T∆j ≤ Q

where Q and Q are, respectively, the infimum and the supremum of Q over [0, t]. Suppose further
that Q is bounded away from 0, i.e. Q > 0.

Then we have
maxj T

r/2
∆j√

[T∆][r]
≤ 1√

n

(
max δj

min δj

)r/2

(Q/Q)/r/2 → 0

10



and it follows that condition (5.3) is satisfied and Theorem 5.1 applies if max δj/ min δj is
bounded above, as is the case in particular if the subdivision ∆ is equidistant. �

Now suppose that [T∆][r/2] converges as |∆| → 0, with limit [T ][r/2], irrespectively of which
sequence of subdivisions is considered. It is then of interest to consider conditions under which

[X∆][r] − µr[T ][r/2]√
vr[T∆][r]

law→ N(0, 1). (5.5)

Clearly this will be the case provided

[T∆][r/2] − [T ][r/2]√
[T∆][r]

→ 0

as |∆| → 0. In particular, for r = 2 we have simply [T∆][r/2] = [T ][r/2] and therefore the following
Corollary to Theorem 5.1.

Corollary 5.1 If
maxj T∆j√

[T∆][2]
→ 0

as |∆| → 0 then
[X∆][2](t) − T (t)√

2[T∆][2]
law→ N(0, 1).

�

Example 5.4 Let the setting be as in Example 5.3 and assume that ∆ is equidistant. Then
for any γ > 0, by the Riemann integrability of Q,

δ1−γ [T∆][γ] = δ1−γ [Tδ][γ] = δ1−γ
∑(∫ jδ

(j−1)δ
Q(s)ds

)γ

→
∫ t

0
Qγ(s)ds = Qγ∗(t). (5.6)

In the present case the left hand side of (5.5) can be rewritten

[Xδ][r] − µr[Tδ][r/2]√
vr[Tδ][r]

=
δ1−r/2[Xδ][r] − µrδ

1−r/2[Tδ][r/2]

δ1/2
√

vrδ
1−r[Tδ][r]

and therefore, if
δ1−r/2[Tδ][r/2] − Qr/2∗

δ1/2
→ 0 (5.7)

as δ → 0, then
δ1−r/2[Xδ][r] − µrQ

r/2∗

δ1/2√vrQr∗
law→ N(0, 1). (5.8)

Now, in view of (5.6),

δ1−r/2[T∆][r/2] − Qr/2∗

δ1/2
= δ1/2

∑
(φr/2

j − ψ
r/2
j )

where φj and ψj satisfy

∫ jδ

(j−1)δ
Q(s)ds = δφj and

∫ jδ

(j−1)δ
Qr/2(s)ds = δψ

r/2
j

11



with both φj and ψj bounded above and below by the upper and lower limit of Q on the interval
[(j − 1)δ, jδ]. Thus (5.7) is in fact satisfied.

Note further that since (5.8) holds for arbitrary r > 0 we have that µ−1
2r δ1−r[Xδ][2r] provides

a consistent estimator of Qr∗. Therefore, from (5.8) we obtain

δ1−r/2[Xδ][r] − µrQ
r/2∗

δ1/2
√

vrµ
−1
2r δ1−r[Xδ][2r]

law→ N(0, 1).

We have thus rederived the result (3.2) (under the assumption that A = 0). In Subsection 5.3
we will go on to extend this result by looking at sums of the form

∑
δ
1−r/2
j |X(tj)−X(tj−1)|r. �

5.2. Probability limits

In the setting of Example 5.4, where X = H • W , we found that

δ1−r/2
(
[Xδ][r] − µr[Tδ][r/2]

)
p→ 0

and here T = Q∗. We now consider the possibility of having a similar probability limit result
for the more general case where X = B ◦ T , cf. the introduction to the present Section.

We have
δ1−r/2

(
[Xδ][r] − µr[Tδ][r/2]

)
law= yn

where yn = yn1 + · · · + ynn with ynj = cnjxnj ,

cnj = δ1−r/2T
r/2
δj ,

and where δ = n−1, Tδj = T (jδ) − T ((j − 1)δ) and xnj
law= x with x given by x = |u|r − µr.

By Corollary 4.3, in order that yn
p→ 0 it suffices, letting T̂δ = max Tδj , to have

δ1−r/2T̂
r/2
δ → 0 (5.9)

and for every ε > 0
nP{|x| ≥ δ−1+r/2T̂

−r/2
δ ε} → 0 (5.10)

and

sup
n

δ
n∑

j=1

δ−r/2T
r/2
δj < ∞. (5.11)

We are mostly interested in the range 0 < r < 2. For that (5.9) is automatically satisfied. As
regards (5.10), the tail behaviour of |x| is equivalent to the tail behaviour of |u|r and

P (|u|r > ξ) = 2(1 − Φ(ξ1/r)) ∼
√

2
π

ξ−1/re−
1
2
ξ2/r

.

Thus

MP{|x| ≥ δ−1+r/2T
−r/2
M ε} ≤ δ−1P (|x| > δ−(1−r/2)T (t)−r/2ε)

∼
√

2
π

T (t)1/2ε−1/rδ−
3
2
+ 1

r exp(−1
2
ε2/rT (t)−1δ−( 2

r
−1))

→ 0.
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Hence we have

Theorem 5.2 Let 0 < r < 2 and T̄δj = δ−1Tδj . Suppose that

sup
n

δ
n∑

j=1

T̄
r/2
δj < ∞. (5.12)

Then
δ1−r/2

(
[Xδ][r] − [Tδ][r/2]

)
p→ 0.

�

5.3. General subdivisions

We proceed to generalise Theorem 5.1 (supposing A = 0) to non-equidistant ∆. Thus, again,
we assume X to be a process of the form X = H • W , and Q = H2. As before, convergence
statements will refer to a sequence of subdivisions ∆ with |∆| → 0.

It is now convenient to introduce the notation

[X∆]
[r]

=
∑

δ
1−r/2
j |X(tj) − X(tj−1)|r (5.13)

and the condition

(V̄) The volatility process H is (pathwise) bounded away from 0 and has, moreover, the
property that for some γ > 0 (equivalently for all γ > 0)∑m

j=1 δj |Hγ(ηj) − Hγ(ξj)|√
min δj

→ 0 (5.14)

for any sequences ξj = ξj(∆) and ηj = ηj(∆) satisfying

0 ≤ ξ1 ≤ η1 ≤ t1 ≤ ξ2 ≤ η2 ≤ t2 ≤ · · · ≤ ξn ≤ ηn ≤ t.

In case ∆ is equidistant condition (V̄) reduces to condition (V).
Now recall the definition of an ε-balanced sequence of subdivisions ∆, given in Subsection 2.2.

Theorem 5.3 Let X be a semimartingale of the form X = H • W and suppose that the
volatility process H is independent of the Brownian motion W and satisfies conditions (R) and
(V̄). Then, for any t > 0 and for any 1

2 -balanced sequence of subdivisions ∆ we have

[X∆]
[r]

(t)
p→ µrH

r∗(t) (5.15)

as |∆| → 0 and where µr = E{|u|r} and u ∼ N(0, 1).
Furthermore, if the sequence of subdivisions ∆ is 2

3 -balanced then

[X∆]
[r]

(t) − µrH
r∗(t)√

µ−1
2r νr

∑
δ2−r
j |X(tj) − X(tj−1)|r(t)

law→ N(0, 1) (5.16)

where νr = Var{|u|r} is the variance of |u|r. �
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Proof We have

[X∆]
[r] law=

∑
δ
1−r/2
j |Q∗(tj) − Q∗(tj−1)|r/2|uj |r

where the uj are i.i.d. standard normal. Hence, since

[Q∗
∆]

[r/2]
=
∑

δ
1−r/2
j |Q∗(tj) − Q∗(tj−1)|r/2

we find
[X∆]

[r] − µr[Q∗
∆]

[r] law=
∑

δ
1−r/2
j |Q∗(tj) − Q∗(tj−1)|r/2(|u|r − µr)

and it follows from Corollary 4.1 that

[X∆]
[r]

(t) − µr[Q∗
∆]

[r/2]
(t)√

vr
∑

δ2−r
j |Q∗(tj) − Qr∗(tj−1)|r

law→ N(0, 1) (5.17)

provided
max

{
δ
1−r/2
j |Q∗(tj) − Q∗(tj−1)|r/2

}
√∑

δ2−r
j |Q∗(tj) − Q∗(tj−1)|r

→ 0. (5.18)

To show that the latter is the case we note that

max
{

δ
1−r/2
j |Q∗(tj) − Qr∗(tj−1)|r/2

}
√∑

δ2−r
j |Q∗(tj) − Qr∗(tj−1)|r

≤ max δj√
min δj

max
{

δ
−r/2
j |Q∗(tj) − Qr∗(tj−1)|r/2

}
√∑

δ−r
j |Q∗(tj) − Qr∗(tj−1)|r

=
max δj√
min δj

max φ
r/2
j√∑

δjφ
r
j

(5.19)

where φj is given by
δ−1
j |Q∗(tj) − Q∗(tj−1)| = φj . (5.20)

By condition (R), φj ≤ sup0≤s≤t Q(s) < ∞ and, for any γ > 0,

∑
δjφ

γ
j →

∫ t

0
Qγ(s)ds = Qγ∗(t) (5.21)

which, together with (5.19) and the assumption that the sequence of subdivisions ∆ is 1
2 -balanced

implies that (5.18) is fulfilled. Hence (5.17) has been shown to hold.
By (5.21) we also have

[Q∗
∆]

[γ] → Qγ∗(t) (5.22)

for every γ > 0 and therefore, in view of (5.17), we will have

[X∆]
[r]

(t) − µrH
r∗(t)√

vr
∑

δ2−r
j |Q∗(tj) − Q∗(tj−1)|r

law→ N(0, 1) (5.23)

provided
[Q∗

∆]
[r/2]

(t) − Qr/2∗(t)√∑
δ2−r
j |Q∗(tj) − Q∗(tj−1)|r

→ 0. (5.24)
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The numerator in (5.24) may be rewritten as

[Q∗
∆]

[r/2]
(t) − Qr/2∗(t) =

∑
δj

(
δ
−r/2
j |Q∗(tj) − Q∗(tj−1)|r/2 − δ−1

j

∫ tj

tj−1

Qr/2(s)ds

)

=
∑

δj

(
φ

r/2
j − ψ

r/2
j

)
where φj was defined by (5.20) and

ψj =

(
δ−1
j

∫ tj

tj−1

Qr/2(s)ds

)2/r

. (5.25)

(For simplicity, we have suppressed the dependence of ψj on r in the notation.) For the denom-
inator we have∑

δ2−r
j |Q∗(tj) − Q∗(tj−1)|r ≥ min δj

∑
δkφ

r/2
k ∼ min δjQ

r/2∗(t). (5.26)

Thus

[Q∗
∆]

[r/2]
(t) − Qr/2∗(t)√∑

δ2−r
j |Q∗(tj) − Q∗(tj−1)|r

≤ 1√
[Q∗

∆]
[r]

(t)

∑
δj

(
φ

r/2
j − ψ

r/2
j

)
√

min δj

and on account of (5.22) and condition (V̄) the right hand side tends to 0, verifying (5.24) and
hence (5.23).

Since by (5.26) the denominator in (5.23) tends to 0 we have shown the first assertion in
Theorem 5.3.

It remains to prove that, under the strengthened assumption that the sequence of subdivisions
is 2

3 -balanced, we may substitute

µ−1
2r

∑
δ2−r
j |X(tj) − X(tj−1)|r(t)

for ∑
δ2−r
j |Q∗(tj) − Q∗(tj−1)|r (5.27)

in (5.23). Noting that ∑
δ2−r
j |Q∗(tj) − Q∗(tj−1)|r =

∑
δ2
jφ

r
j

and ∑
δ2−r
j |X(tj) − X(tj−1)|r − µ2r

∑
δ2−r
j |Q∗(tj) − Q∗(tj−1)|r law=

∑
δ2
jφ

r
j(|uj |2r − µ2r)

we must, in other words, prove that
∑

δ2
jφ

r
j(|uj |2r − µ2r) is of smaller order of magnitude than∑

δ2
jφ

r
j |uj |2r, in probability as |∆| → 0. For this it is enough to show that the standard variation

of the former sum is of smaller order than the mean of the latter sum. The ratio of these two
quantities is

√
ν2r

µ2r

√∑
δ4
jφ

2r
j∑

δ2
jφ

r
j

where for the second ratio we have√∑
δ4
jφ

2r
j∑

δ2
jφ

r
j

≤ (max δj)3/2

min δj

√∑
δjφ

2r
j∑

δjφ
r
j
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The second ratio on the right hand side of this inequality is bounded, by a previous argument,
and the first ratio tends to 0 on account of the 2

3 -balancedness assumption. �

Example 5.7 If the sequence of subdivisions ∆ is balanced and if H is of local bounded
variation then condition (5.14) is satisfied. The latter requirement is met in particular by the
superpositions of OU processes used as models for H in Barndorff-Nielsen and Shephard (2001a),
Barndorff-Nielsen and Shephard (2001b), cf. also Barndorff-Nielsen (2001) and Barndorff-
Nielsen, Nicolato, and Shephard (2002). �

5.4. Weighted variations

Suppose for the moment that the subdivision ∆ is equidistant. Above we have discussed the
asymptotic behaviour of sums

∑ |X(jδ)−X((j−1)δ)|r. It is sometimes of interest to allow for the
single terms to occur with individual weights, thus considering sums of the form

∑
cj |X(jδ) −

X((j − 1)δ)|r where the bj are chosen weights. In broad generality limit results like those
established above will hold in this setting, as we shall now indicate.

Let B be an increasing function on [0,∞) with B(0) = 0 and let

Bj = B(tj) − B(tj−1), Xj = X(tj) − X(tj−1), Tj = T (tj) − T (tj−1).

Then

∑
δ
−r/2
j |Xj |rBj

law=
∑

δ
−r/2
j T

r/2
j Bj |uj |r

and it follows from Corollary 4.1 that∑
δ
−r/2
j T

r/2
j Bj (|uj |r − µr)√

νr
∑

δ−r
j T r

j B2
j

law→ N(0, 1)

provided
max δ

−r/2
j T

r/2
j Bj√∑

δ−r
j T r

j B2
j

→ 0 (5.28)

as |∆| → 0.
In case T is of the form Q∗, as above, we have∑

δ
−r/2
j T

r/2
j Bj →

∫ t

0
Qr/2(s)dB(s)

and ∑
δ−r
j T r

j B2
j → 2

∫ t

0
Qr(s)B(s)dB(s).

Consequently, assuming (5.28) holds we will, subject to a further mild condition, similar to
condition (V̄), have that∑

δ
−r/2
j |Xj |rBj − µr

∫ t
0 Qr/2(s)dB(s)√

νr2
∫ t
0 Qr(s)B(s)dB(s)

law→ N(0, 1).

Furthermore, the integral in the latter relation can be consistently estimated yielding as the
final result ∑

δ
−r/2
j |Xj |rBj − µr

∫ t
0 Qr/2(s)dB(s)√

2νrµ
−1
2r

∑
δ−r
j |Xj |2rB2

j

law→ N(0, 1).
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6. Power variation and time–changed stable processes

We now inquire into the question of the degree to which the results discussed above for time-
changed Brownian motion can be extended to the class of α-stable processes. For simplicity we
restrict attention to the case where X is of the form X = H • Z for some symmetric α-stable
Lévy process, and we consider only equidistant subdivisions.

We first recall some known facts about symmetric α-stable processes. Let Z be the symmetric
α-stable process with 0 < α < 2 and cumulant function

C{ζ ‡ Z(t)} = log EeiζZ(t) = −t|ζ|α. (6.1)

This process is representable by subordination as

Z(t) law= B(S(t)),

where S is the positive α/2-stable subordinator with kumulant function

K̄{θ ‡ S(t)} = log Ee−θS(t) = −t(2θ)α/2.

When r < α, which is needed for the moments to exist, we will write

µα,r = E{|Z(1)|r} = µrE
{

S(1)r/2
}

.

Furthermore, if H is a predictable process such that for all t > 0∫ t

0
|H|αs ds < ∞

and, for t → ∞, ∫ t

0
|H|αs ds → ∞

then
H • Z = Z̃ ◦ |H|α∗ (6.2)

where Z̃ is a symmetric α-stable process and (in the previously established notation)

|H|α∗t =
∫ t

0
|H|αs ds.

Remark In case H is nonnegative the same conclusion holds for arbitrary, i.e. not nec-
essarily symmetric, α-stable processes. For a proof and the history of these result, see Kallsen
and Shiryaev (2002). These authors also show that, in essence, the results cannot be extended
to more general Lévy processes. �

Henceforth, let H(t) be a nonnegative and locally Riemann integrable function on [0,∞) and
assume that ∫ t

0
Hα(s)dZ(s) < ∞

for all t > 0. Then X = H • Z is a well-defined process. In line with the previous discussion,
we assume that H and Z are independent, and we write Xj = X(jδ) − X((j − 1)δ) and Zj =
Z(jδ) − Z((j − 1)δ).

As an initial consideration we look at the asymptotic behaviour of unnormalised power
variations and let H ≡ 1, i.e. we consider the simplest case, X = Z. Recall first that the
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sup-variation [Z][r](t) is finite or infinite according to whether r > α or r ≤ α (cf. Fristedt and
Taylor (1973), Mikosch and Norvaǐsa (2000)).

The law of |Xj | is the same as the law of δ1/α|Z(1)| and thus

[Xδ][r](t)
law= δr/α

M∑
j=1

|Zj |r.

The random variables |Zj | belongs to the domain of normal attraction of a stable law with
index α. Hence, on account of Feller (1971, pp. 580–581), we have the following limit properties,
where for simplicity we are letting r = 1:

If 1 < α < 2 then, for a certain α-stable law Sα,

[Xδ][1](t) − δ−1+1/αµα,1
law→ Sα.

If 0 < α < 1 then, for a certain positive α-stable law S+α,

[Xδ][1](t)
law→ S+α.

If α = 1 then, for a certain 1-stable law S1,

[Xδ][1](t) − bδ
law→ S1

where
bδ =

∫ ∞

−∞
sin(δx)dP{|Z(1)| ≤ x}.

In all three cases, δ1/2[Xδ][1](t)
p→ 0. Note that the above limit laws are more complicated

than the mixed Gaussian limit laws obtained in Sections 3 and 5.
Next, for general H we have, by (6.1) and (6.2),

Xj
law=

(∫ jδ

(j−1)δ
Hα(s)ds

)1/α

Z(1)

so that

|Xj |r law=

(∫ jδ

(j−1)δ
Hα(s)ds

)r/α

|vj |r (6.3)

where v1, ..., vM are i.i.d. with the same distribution as Z(1). Equivalently, by the subordination
property, we have

|Xj |r law=

(∫ jδ

(j−1)δ
Hα(s)ds

)r/α

q
r/2
j |uj |r

where the q1, ..., qM are i.i.d., with the same law as S(1) and are independent of u1, ..., uM which
are i.i.d. standard normal.

In view of these representations of |Xj |r it would be rather simple to give a complete de-
scription of the various possible limiting behaviours of realised power variation as δ → 0. Here
we shall only discuss some particular cases.
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For r = 2 we have that realised quadratic variation is

[Xδ](t)
law=




n∑
j=1

|uj |α
∫ jδ

(j−1)δ
Hα(s)ds




2/α

S(1).

The term in braces satisfies, conditionally on H, as δ ↓ 0

M∑
j=1

|uj |α
∫ jδ

(j−1)δ
Hα(s)ds

p→ µαHα∗(t).

This follows from Corollary 4.3. Consequently, for the quadratic variation we have

[X∗](t) law= {µαHα∗(t)}2/αS(1). (6.4)

Much simpler and statistically more powerful results are available if we use realised power
variation instead of realised quadratic variation.

Recall E |Z(1)|γ exists if (and only if) γ < α. Thus the moments of |Z(1)|r exist up to, but
not including, order α/r. Hence, still given H, if r < α and 1 < α < 2 then

δ1−r/α[Xδ][r](t)
p→ µα,rH

r∗(t), (6.5)

(where µα,r = E{|Z(1)|r}). This may be verified by means of Corollary 4.2. In fact, the
assumptions made on H imply that it suffices to prove the statement in the case H ≡ 1. Then,
in the notation of Corollary 4.2, cn = n−1 and the conditions (4.5)-(4.8) are easily checked
using the well known tail behaviour of the α-stable laws. (The result (6.5) provides a simple
generalisation of the use of quadratic variation for Brownian motion based stochastic volatility
models, for then r = 2 and

[Xδ][2](t)
p→ H2∗(t)

exactly.)
In case r < α/2 we have the stronger result that

δ1−r/αµ−1
α,r[Xδy

∗
δ ]

[r](t) − Hr∗(t)

δ1/2
√

µ−2
α,rvα,rH2r∗(t)

law→ N(0, 1), (6.6)

where vα,r = Var{|z(1)|r}. This result holds both conditionally and unconditionally. This is a
consequence of Corollary 4.1.

Of course in practice the above limit theory is has an unknown denominator H2r∗(t) and so
could not be used even if we were to know α. However, in theory we could replace H2r∗(t) by
the consistent estimator

δ1−2r/αµ−1
α,2r[Xδ][2r](t).

7. Related work

There are in the literature a considerable number of important results on power variations of
semimartingales generally, and Lévy processes in particular, that are related but not directly
relevant to what we have discussed above. To complete the picture the following subsections
contain a brief guide to those results.
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7.1. Power variation and Lévy processes

A number of authors have investigated the relation between the Lévy measure ν of a Lévy
process L and existence of sup-variations of the process.

The Blumenthal-Getoor index of a Lévy process is defined by

β = inf{r > 0 :
∫

[−1,1]
|x|rν(dx) < ∞}.

If β < r then pathwise (Lépingle (1976), Hudson and Mason (1976))

[Lδ][r](t) →
∑

0<s≤t

|∆L(s)|r < ∞

whereas in general [Lδ][r](t) → ∞ when r ≤ β.
Furthermore (see Sato (1999, Theorem 21.9)), with r = 1 we have [L][1] < ∞ or = ∞

according as β ≤ 1 or 1 < β(< 2).
Some extensions to additive processes are considered in Woerner (2002).

7.2. Power variation and semimartingales

Let X be a semimartingale. Lépingle (1976) considered sup-variations of semimartingales gen-
erally and showed that [X][r](t) < ∞ for every r > 2 while for 1 < r < 2 we have

[Xδ][r](t) →
∑

0<s≤t

|∆X(s)|r

provided 〈X〉t = 0 and ∑
0<s≤t

|∆X(s)|r < ∞.

7.3. Sub-φ variation and integration

We briefly recall the role of sup-variation in the theory of integration.
Young (1936) extended the Stieltjes integral to allow for integration in cases where the

integrand and/or the integrator may be of unbounded variation. Dudley (1992) and Dudley
and Norvaǐsa (1999) extended the concept further, and Mikosch and Norvaǐsa (2000) applies the
theory to give path-by-path solutions to many basic stochastic integral equations. The main
condition for the existence of such solutions is that 0 < r < 2.

An annotated bibliography on power variation is available in Dudley, Norvaǐsa, and Jianghau
Qian (1999). See also Dudley and Norvaǐsa (1998). We also refer to the related work of Lyons on
rough paths, see Lyons (1994) and Bass, Hambly, and Lyons (2002) and references given there.

7.4. A general class of variation results

The limit behaviour as M → ∞ of processes of the type

YM (t) =
[Mt]∑
j=1

f

[
j − 1
M

,
1√
M

{
X

(
j

M

)
− X

(
j − 1
M

)}]

where f is function of two variables and X denotes a Brownian semimartingale (of a certain kind,
see below) has been discussed in great depth in a thesis by Becker (1998). The diffusion case is
especially important. Extensions to general continuous or purely discontinuous semimartingales
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and even combination of the two are presented. The thesis is partly based on an earlier report
by Jacod (1992), see also Delattre and Jacod (1997) and Florens-Zmirou (1993). Both X and f
may be multidimensional, and generalisations to cases where not only the increment of X over
the j-th interval but the whole trajectory over that interval occurs in the second argument of f
are also considered.

Of immediate interest in connection with the present paper are Becker’s results when X is
a Brownian semimartingale. More specifically, Becker considers the case where X is of the form

X(t) =
∫ t

0
C(s)ds +

∫ t

0
H(s)dW (s)

where W is Brownian motion and C and H are predictable and subject to restrictions on their
variational behaviour. He shows, in particular, that YM (t) after a suitable centering converges
to a stochastic process which is representable as a certain type of stochastic integral where the
integration is with respect to a ‘martingale-measure tangential to X’. A key point of our work
discussed above is that for the kind of functions f we consider, i.e. absolute powers, we are able
to identify the limit behaviour as mixed Gaussian and, crucially for the statistical applicability,
from this to establish standard normal limit statements using random rescaling by observable
scale factors.
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Sato, K. (1999). Lévy Processes and Infinitely Divisible Distributions. Cambridge: Cambridge
University Press.

Shiryaev, A. N. (1999). Essentials of Stochastic Finance: Facts, Models and Theory. Singa-
pore: World Scientific.

Woerner, J. (2002). Power variation: an important tool for model selection and estimation in
semimartingale models. Unpublished paper: OCIAM, Mathematical Institute, University
of Oxford.
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