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Abstract

Testing for structural breaks is an empirically relevant issue. Several procedures have
been proposed in the literature, which is primarily technical. Some practical issues are
addressed here, leading to a relatively simple and operational test procedure. An algorithm
is proposed to find the set of breaks that minimizes the residual sum of squares in the
partial structural change model, in particular a breaking trend with a fixed level. A new
test is proposed that is the maximum of the supremum test of Bai & Perron (1998) and the
test applied to the first differences. This controls the size for I(1) errors fairly well, and
allows for the I(0) critical values to be used. Instead of supplying tables, the asymptotic
and finite sample distributions are approximated. The procedures are applied to testing for
breaking trends in the last 60 years of fertility data at a national and supranational level,
with substantive support for broken trends in many countries.

Keywords: Asymptotic distribution; fertility, level shift; local trend; model selection; structural
break.

1 Introduction

Intermittent large changes appear to be a common feature of much economic and social data.
After the global financial crisis of 2008, the trend in productivity appears lower than before in
many countries. Coming out of the global SARS-CoV-2 pandemic of 2020–2021, inflation has
been trending upwards after staying low for a relatively long period. Testing whether a break in
level or trend has occurred is of practical interest, and models covering these periods may need
to accommodate several structural breaks.

One strand of literature has followed in the footsteps of Andrews (1993) by computing statis-
tics for a break in level or trend at any point in the sample, and deriving the asymptotic distri-
bution of the supremum of these statistics under the null of no break. Bai and Perron (1998)
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tions. Financial support from the Robertson Foundation (award 9907422), Nuffield College, the Institute for New
Economic Thinking (grant 20029822) and the ERC (grant 694262, DisCont) is gratefully acknowledged.
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derive a test for stuctural breaks in the presence of non-breaking regressors and allowing serial
correlated disturbances, not necessarily identically distributed across segments. The test can be
applied to dynamic models, either with lagged dependent variables to arrive at serially uncorre-
lated errors, or leaving the serial correlation in the error term, but using robust standard errors.
This procedure requires choosing a fraction ε of the sample size (say 10%) to impose spacing of
the break point away from the sample extremes as well as other breaks. Bai and Perron (1998)
provide a table of critical values based on a discrete approximation to the asymptotic distribution
with a sample size of 1000 and 10 000 replications.

The number of breaks is not normally known, and Bai and Perron (1998) also provide a
procedure for that case, first testing for no break. If that is rejected, move to the test for two
breaks given one break, etc. They show that an expanding number of level shifts works, because,
when the number of breaks is underspecified, the break dates are still estimated consistently. A
table with critical values is supplied for this procedure for ε = 0.05. The assumptions underlying
the derivation of the asymptotic distribution rule out trending regressors. Robust versions of the
test allow for moderate amounts of stationary serial correlation.

The next stage of this literature extends the procedure of Bai and Perron simultaneously in
two directions: trending behaviour with a break in the level or trend, and disturbances that can
have a unit root. The initial focus is on testing for a single break at a known date, next extended
to an unknown single date. Perron and Yabu (2009) use an adjusted estimate of the autore-
gressive parameter to construct a test statistic from feasible generalized least squares (FGLS)
estimation. Any remaining serial correlation is captured by a robust estimate of the scale. Har-
vey, Leybourne, and Taylor (2010) provide a test for a single trend break at an unknown date,
again allowing for I(0) and I(1) errors. Their test is a weighted average of robust t-tests on the
broken trend of the model in levels and broken intercept in the differenced model. The weights
depend on the KPSS statistic for stationarity (Kwiatkowski, Phillips, Schmidt, and Shin, 1993).
This test is simpler to implement, but provides less size control in the I(1) case. A third approach
is taken by Sayginsoy and Vogelsang (2011), scaling the robust test statistic by a factor that de-
pends on the amount of serial correlation. This test requires long tables of parameters that have
been calibrated by the authors.

Extensions to an unknown number of trend breaks are proposed by Kejriwal and Perron
(2010) for the first procedure, and Sobreira and Nunes (2016) for the second. These apply the Bai
and Perron (1998) approach: conditional on one break (say), the sample is split at this break, and
each segment tested for a single break. The test is the supremum of the two. Next, conditional on
two breaks, the sample is split in three etc. However, the location of the breaks is not kept fixed
when a new one is added: instead, for each number of breaks, the dates are determined by the set
that minimizes the residual sum of squares (RSS). This can become computationally demanding,
e.g. for three breaks it is necessary to try all possible combinations of three dates subject to
the adopted amount of separation ε. Bai and Perron (2003) provide a dynamic programming
algorithm that is more efficient than brute force, and Kejriwal and Perron (2010) recommend
using this for their procedure.

The focus of the procedures discussed so far is firmly on testing for the presence of breaks
under very general conditions on the error distribution. Another approach, represented by Castle,
Doornik, Hendry, and Pretis (2020), is mainly concerned with model building, with the trend (or
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other) breaks embedded in the model selection procedure. In the testing approach the non-
breaking specification of the model is assumed known, or left unmodelled in the errors – with
the latter generally the case in applications. In the modelling approach the objective is to find
models with approximately normal residuals in order to sustain standard inference. We consider
these complementary, and which approach is preferred depends on the empirical objectives. The
asymptotic theory for the model building approach is less developed.

All the testing papers referenced sofar take a technical approach, deriving the asymptotic
properties of the proposed tests. A practitioner may find it difficult to decide which procedure to
use, and implementation of tests and the RSS minimization algorithm is not straightforward:

1. Asymptotic tables are based on a relatively small number of simulations and in some
cases spread over several publications, partially in unpublished papers, or embedded in
downloadable code. The choice of sample truncation ε may also be limited to just one
value.

2. Each procedure uses a different method to compute robust estimates, and it is unclear to
what extent this affects the results in realistic samples. All three basic procedures use
different kernels in the robust estimates.

3. The algorithm of Bai and Perron (2003) does not apply to the model where only the trend
breaks. From an empirical perspective this may be the more relevant model, so arguably
no practical solution has been proposed yet in the literature.

4. Even with a working algorithm there remains the issue that, when the number of broken
trends is underspecified, trend dating is not always consistent – unlike the model with level
shifts. This is illustrated by Yang (2017), who argues that break point estimation in the
first differenced model can be used instead. Although, provided the test still rejects with a
wrongly-dated break, the overall procedure can have power because it does not condition
on this wrong date.

We present an alternative algorithm to estimate the break dates that is valid in a more general
setting in §2. It can also be substantially faster. Then §3 studies the new algorithm in simulation
experiments with two breaks in the DGP. A modified test is proposed in §4, which also works
for I(1) errors. Critical values are provided through simple approximations to the asymptotic
distributions, similar to Nielsen (1997) and Doornik (1998). §5 studies the new test and dis-
tributional approximations through simulations; §6 considers testing for multiple breaks. The
empirical application in §7 tests for breaks in fertility and birth rates in most countries of the
world. §8 concludes, while some further results are in appendices.

2 An algorithm to estimate break dates

We show that the algorithm of Bai and Perron (2003) (BP03) cannot be used when only the trend
breaks, and introduce an alternative algorithm.

The basic data generation process is one with a break in period B1 and an autoregressive
error term:

yt = d
′
tβ + xt(B1)

′ψ(B1) + ut, ut = ρut−1 + ϵt, (1)
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for t = 1, ..., T , with u0 fixed, ϵt stationary white noise, and in most cases |ρ| ≤ 1, so I(1)
errors are allowed. The regressors dt and xt(B1) contain q and k known deterministic terms
respectively, and we are interested in testing H0: ψ(B1) = 0. In matrix form: D′ = (d1, ..., dT )
andX(s)′ = (x1(s), ..., xT (s)). Regardless of the structure of ut, the first step is ordinary least
squares (OLS) estimation of

yt = d
′
tβ + xt(B1)

′ψ(B1) + ut, t = 1, ..., T. (2)

Particular specifications with a break at s allow for broken intercept Ut(s) = 1{t>s} and
broken trend Dt(s) = (t− s)Ut(s), numbered here as follows:

Model 0: dt = 1 xt(s) = Ut(s) (broken intercept, no trend),

Model 1: d′t = (1, t) xt(s) = Ut(s) (broken intercept),

Model 2: d′t = (1, t) xt(s) = Dt(s) (broken trend), (3)

Model 3: d′t = (1, t) xt(s)
′ = (Ut(s), Dt(s)) (both broken).

There may be additional non-breaking regressors, which are added to dt. Model 0 is handled in
Bai and Perron (1998) (BP), where trending regressors and ρ = 1 are ruled out from the test.

An important aspect is the estimation of break dates, in this case minimizing the RSS for
the given number of breaks. The dynamic programming algorithm of BP03 applies to the pure
structural change model, i.e. all regressors break, which can be written with block-partitioned
regressors. Extending (2) to m breaks:

y =X#
B θ + uB. (4)

Here X#
B = diag(X1, ...,Xm+1) for break set B(m) = (B1, ..., Bm), Bi ≤ Bi+1 − T0, and

k(m+1)-column vector θ, θ′ = (θ′1, ...,θ
′
m+1). The algorithm finds the optimal set of m breaks

by OLS in terms of RSS:

B̂ε(m) = arg min
B1,...,Bm∈[T0,T1]

{
σ̂2
u(B) = 1

T u
′
BuB | y =X#

B θ + uB; ε
}
. (5)

The cut-off ε defines the sample span ⌊εT ⌋, ..., ⌊(1 − ε)T ⌋ in which the breaks may fall, while
the breaks must also be ⌊εT ⌋ observations apart, where ⌊⌋ truncates down to the nearest integer.

Models 0 and 3, see (3), clearly fit the pattern of (4), with the null hypothesis of no break
obtained by θ1 = ... = θ′m+1. Implementation of the BP03 algorithm requires storage of order
T 2, and T − T0 recursive least squares (RLS) runs. Recursive computation of RSS can be
implemented efficiently by downdating the QR decomposition (see Appendix A), which makes
the algorithm relatively fast.

For the partial structural change model, i.e. models 1 and 2, the non-breaking variables are
captured in the matrixD.

y =X#
B θ +Dβ + uB, (6)

BP03 suggest an iterative application of the dynamic programming algorithm, alternating be-
tween θ,B|β̂ and β,θ|B̂. This allows for the dynamic programming algorithm to be used on
the pure conditional change model:

y −Dβ̂ =X#
B θ + uB. (7)
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Then β is updated with (6) based on new break set (as is θ, but its value is not needed).1 We
refer to this procedure as the BP03 algorithm. Convergence to a stationary point is achieved
when no further progress is made in the alternating variables iteration. This approach can be
used for model 1, because the broken intercept can be block partitioned.

However, this iterated dynamic programming solution for (7) does not apply to model 2,
because the broken trend Dt(s) = (t− s)1{t>s} starts at one when t = s+ 1. Consider, e.g., a
single break half-way in a sample of six, which has regressors (ignoring the intercept):

model 2:



1 0
2 0
3 0
4 1
5 2
6 3

 BP03 algorithm:



1 0
2 0
3 0
0 4
0 5
0 6

 .

So the BP03 algorithm for a trend break only, which has intercept and trend in D, also breaks
the intercept in a specific way. This does not correspond to model 2.

Appendix A proposes an alternative algorithm that applies to all models, including model 2.
In each iteration it removes a current break point, one at a time, to see if it can be replaced by a
better one. This algorithm converges when the break set does not change, which is a stationary
point. A global maximum is not guaranteed. Special care is required to enforce separation of
the break points.

As an illustration we use the ex-post interest rate of Garcia and Perron (1996). We im-
plemented the BP03 algorithm in Ox 9 (Doornik, 2021), and have verified the results with the
GAUSS code available from Pierre Perron’s web site at blogs.bu.edu/perron/codes.
This code uses the same data set, and allows any variables to be specified as breaking or non-
breaking. The dashed line in the top-left plot in Figure 1 shows the estimated trend with a single
break from the BP03 algorithm. Our new algorithm is shown in the solid line. The top-right plot
repeats this for two breaks. In both cases we see that the application of BP03 does not give the
intended result.

The bottom plots in Figure 1 offer the estimated breaks using the model 3 specification in
comparison. In this case, both algorithms are in complete agreement.

We should emphasize that neither algorithm guarantees a global minimum. For example,
the BP03 algorithm applying model 1 to the ex post real interest rate spaced by ten observations
finds three breaks at B = (24, 47, 79) with RSS 443.1. However, break set (47, 57, 79) has a

1BP03 §3.5 suggests to get the initial values of B and θ by treating all variables as breaking:

y = X#
B θ +D#

B B + vB,

then estimating β from:
y −X#

B̂
θ̂ = Dβ +w.

This can result in poor starting values, e.g. if we happen to start with the correct break set, it will move the initial
β far from the optimal value. An alternative is to use only the initial break set, and get β from (7). To illustrate the
difference, we use Model 1 for the ex-post real interest rate and spacing of ⌊εT ⌋ = ⌊0.05× 103⌋. The starting RSS
for three breaks is 57208.3 using BP03 §3.5. But with our suggestion the initial RSS is 491.0, saving one iteration.
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Figure 1: BP data. Optimal break set for model 2 (top) and model 3 (bottom) with one break (left) and
two breaks (right), together with optimal break dates when the BP03 algorithm is applied to model 2.

lower RSS of 436.0. This is more likely to happen when the number of breaks is over specified,
and then less relevant empirically.

3 Simulations for break dating algorithms

The performance of the dating algorithms is studied in a simulation experiment. The results are
presented in graphs.

To compare the BP03 algorithm to the proposed algorithm, we adopt a DGP similar to Yang
(2017) This has two breaks in the DGP, while searching for up to three break dates.

First define the DGP used in Perron and Yabu (2009) with up to one break:

yt = η1Ut(s) + η2Dt(s) + ut, t = 1, ..., 100,

ut = ρut−1 + ζ∆ut−1 + ϵt + θϵt−1, u−1 = u0 = ϵ0 = 0, ϵt ∼ N [0, 1]. (8)

The breaks are half-way so s = T/2, and under the null of no break: η1 = η2 = 0. Extending
(8) to M∗ breaks:

yt =

M∗∑
m=1

η1,mUt(⌊mT/M∗⌋) +
M∗∑
m=1

η2,mDt(⌊mT/M∗⌋) + ut. (9)
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Figure 2: Break dates for Model 1 with two level shifts in the DGP (10). Count of detected dates with
BP03 algorithm at the top, counts with alternative algorithm in the middle, difference in log-likelihoods
at the bottom.

Simulations in this section use independent normal errors (ρ = ζ = θ = 0), and two breaks
at observations 33 and 66 for a sample size of 100, using the following parameter values:

DGP1 for Model 1: η1,1 = η1,2 = 1, η2,1 = η2,2 = 0, (10)

DGP2 for Model 2: η1,1 = η1,2 = 0, η2,1 = η2,2 = 1, (11)

DGP3 for Model 3: η1,1 = η1,2 = 1, η2,1 = η2,2 = 1. (12)

We set ε = 0.05.
The results are in Figures 2–4. The first column of graphs in each figure has the results when

searching for one break, the middle column hs the results for two breaks (which corresponds
to the DGP) and the final column is for three breaks. The top row graphs shows the count of
dates found using the BP03 algorithm in 10 000 replications. The middle row reports this for the
proposed algorithm.

There is not much difference between the detected dates of the two algorithms in Figure 2.
The breaks are detected even when the number of breaks is underspecified (in the presence of a
trend, but also without), which improves as the sample size grows. This consistent selection in
the underspecified case is derived theoretically in BP.

The bottom row of Figure 2 compares the log-likelihood of the two methods for each repli-
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Figure 3: Break dates for Model 2 with two trend shifts in the DGP (11). BP03 algorithm at the top,
alternative algorithm in the middle, difference in log-likelihoods at the bottom.

cation (using the same generated data in each case):

T

2
log

RSSbp

RSSa
.

If this is positive, then we prefer the alternative algorithm, otherwise we prefer the BP03 algo-
rithm.

In model 2 only the trend breaks. The top row of Figure 3 reconfirms that the BP03 algorithm
is invalid here. The new algorithm performs well, but it shows what Yang (2017) discusses: trend
break selection in the underspecified case is not consistent. This also applies to model 3, which
is a pure structural change model where the BP03 algorithm is valid, see Figure 4.

The new algorithm completes the simulation in about half the time of the BP03 algorithm
for the pure structural change model. For the partial model the new algorithm is about 15 to 20
times faster (this will be less for a larger ε).

Yang (2017) proposes to date a broken trend in the differenced model. For model 2 this
also means that the BP03 algorithm could be used. The top row of Figure 5 shows that the
underspecified model is consistent again in that case. The first difference of model 3 introduces
a moving impulse dummy, which can be handled in the new algorithm (middle row). However,
the bottom row of Figure 5 shows that it is better to just ignore this impulse dummy when it
comes to dating, at least in this setting.
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Figure 4: Break dates for Model 3 with two trend and level shifts in the DGP (12). BP03 algorithm at
the top, alternative algorithm in the middle, difference in log-likelihoods at the bottom.

4 Tests for a single break at an unknown date

A new test is proposed that is the maximum of the supremum test of Bai & Perron and the test
applied to the first differences. This offers some control over the size for I(1) errors. Approxi-
mations to the distributions are obtained, which give critical values, as well as p-values.

The Bai and Perron (1998) test is based on the Wald test for ψ(s) = 0 at observation s in
(2), estimated by OLS:

W (s) = ψ̂′V
[
ψ̂
]−1

ψ̂
T − k − q

T
(13)

= σ̂−2ψ̂′
[
X(s)′X(s)−X(s)′D

(
D′D

)−1
D′X(s)

]
ψ̂

T − k − q

T
,

where σ̂2
u = û′û/T , and k, q are the number of columns inX(s) andD respectively. The scale

factor amounts to replacing σ̂2
u by the OLS version σ̃2

u = û′û/(T − k − q).
The best break date ŝ is obtained by minimizing2 the RSS from (2). This leads to the basic

version of the BP supremum test, labelled BPN here:

supFBPN = W (ŝ). (14)

2It is also possible to compute the test for all possible breaks. However, BP suggests this procedure is asymptoti-
cally equivalent. It is also more convenient and faster.
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Figure 5: Break dates for Model 2 and 3 in differences (top and middle), and model 3 in differences
without the impulse dummy. DGP (11) and (12).

BP proposes several extensions to serially correlated errors, as well as heteroscedasticity,
which we ignore here. One suggestion is to construct a robust version of the entire V

[
ψ̂
]
. How-

ever, that breaks down with trending regressors. We only consider robust estimation of the scale
through the procedure of Andrews (1991) with prewhitening. The prewhitening is a simple first
order autoregression, AR(1), for ût, estimated by OLS to give ρ̂, truncated to |ρ̂| ≤ 1−1/T ≡ ρ̄.
Then we apply the quadratic spectral kernel estimator with plug-in automatic bandwidth and the
same truncation. The kernel length is truncated at twenty times the bandwidth; often 50 is used,
but we truncate harder because this is faster without noticeable impact. Write ĥu for the robust
scale so computed, and ĥ0u if prewhitening is omitted. The BP test using the quadratic spectral
kernel for the scale is denoted BPQ:

supFBPQ = supFBPN
σ̂2
u

ĥu
. (15)

Subsequently, we shall apply the test with an underspecified number of breaks. This can in-
validate robust estimation, as the neglected partial trends may be interpreted as serial correlation
by the robust procedure even when the errors are white noise. This may also affect the power in
the procedure of Sobreira and Nunes (2016), because omitted partial trends can lead the KPSS
statistics to put all weight on the models in differences.

While supFBPQ improves over supFBPN for moderate amounts of serial correlation, its size is
close to one if there is a unit root. In the introduction we refer to three proposals that handle this
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in different ways. Perron and Yabu (2009) construct a Wald test for each possible observation.
First estimate ρ from the first stage OLS residuals, apply a bias correction that shifts the estimates
towards the unit root in small samples, and then set this to one if the bias corrected ρ̂ exceeds
1− T−1/2. The Wald statistic is computed in the FGLS model. Finally, a choice between three
robust estimates of scale is made, depending on the estimated dynamics of the residuals. They
consider both the supremum version and the geometric average, preferring the latter because
the I(1) and I(0) distributions are close. With the lag length selection and robust estimation
computed at each possible break date, the test takes more time.

We propose a simpler test, which is an extension of the Bai & Perron test. While it is a
supremum version, it also means that the original distribution can still be applied in the I(0)
case. This is achieved by adding in the test based on the differenced model, but without any
parameter driven weighting.

We follow Perron and Yabu (2009) in adopting the bias correction procedure of Roy and
Fuller (2001), but with fixed parameters. Let ρ̂ be the OLS estimate using residuals ût from (2):

ût = ρût−1 + vt, t = 2, ..., T. (16)

Use ρ̂, restricted to [−0.99, 1], and its estimated variance σ̂2
ρ to construct the t-ratio t̂ = (ρ̂ −

1)/σ̂ρ. The bias corrected version is ρ̂c, defined as:

ρ̂c = ρ̂+ Cσ̂ρ,

C =


−t̂ if t̂ > τ1,

t∗ −K/[t̂+ c2(t̂− τ2)] if τ2 < t̂ ≤ τ1,

t∗ −K/t̂ if τ3 < t̂ ≤ τ2,

0 if t̂ ≤ τ3,

where n = ⌊(p+1)/2⌋, t∗ = nt̂/T , K = q+k+1, c2 = [KT−τ21 (n+T )]/[τ1(τ1−τ2)(n+T )],
τ1 = −4, τ2 = −10, τ3 = −(KT )1/2. Finally, p is the lag length used in (16), but we set it to
zero. The value of τ1 in Perron and Yabu (2009) varies between −4.9 and −4.2 with the relative
location of ŝ in the sample and the model; here it is kept fixed.

The new test procedure is as follows. Estimate (2) to obtain W (ŝ) and ût, then estimate (16)
and construct ρ̂c whitened residuals:

êt = v̂t − ρ̂cv̂t−1, t = 2, ..., T.

The first robust statistic is:

W1(ŝ) =

{
W (ŝ) (1− ρ̂c)

2 σ̂u/ĥ
0
e, if ρ̂c < ρ̄,

W (ŝ) (1− ρ̄)2 σ̂u/ĥ
0
e, otherwise.

The bias corrected value is used for prewhitening the robust scale estimate, and h0 is the
quadratic spectral estimate without further prewhitening; ρ̄ = 1−1/T . This improves the prop-
erties close to a unit root, where the method employed in supFBPQ is less effective.

The Wald test is also computed for the model in differences:

∆yt = ∆d′tβ∆ +∆xt(s)
′ψ∆(s) + wt, t = 2, ..., T, (17)
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Figure 6: QQ plots of transformations of the test statistic supFMAX. Model 1 (left), Model 2 (middle),
Model 3 (right), all against right-half of N[0, 1]. QQ plots truncated at quantiles 0.9999. ε = 0.1.

giving

W∆(s) = ψ̂
′
∆V

[
ψ̂∆

]−1
ψ̂∆

T − k − q

T − 1
,

and additional statistic:

W2(ŝ) =

 W∆(ŝ) if ρ̂c < ρ̄,

W∆(ŝ)
σ̂w
hŵ

otherwise.

The new statistic takes the maximum of the two supremum tests:

supFMAX = max {W1(ŝ),W2(ŝ)} . (18)

When the model is stationary and not close to a unit root, the test in levels dominates, and the
same distribution applies as when using just the supremum test. When the model has a unit root,
or is close, the test in differences will dominate. This changes the trend and broken trend to
intercept and broken intercept, so the test for that model will dominate. This is close enough to
use the distribution as if we used just the model in levels, and also keeps the distribution reason-
ably close for a unit root. Avoiding estimating and calibrating a weighting function simplifies
the procedure, while we do not need to change the critical values.

Instead of tabulating we approximate the asymptotic distribution through a response surface.
We start by simulating 100 000 values of supFMAX at sample size T = 1000 under i.i.d. normal-
ity. QQ plots of power transformations of the recorded test outcomes are inspected to get a
decent match to normality in the right tail of the distribution. This gives power d = 0.15 for
model 0, d = 0.12 for model 1, and d = 0.22 for model 2. Model 3 is close to logarithmic
(denoted by power d = 0) with d = 0.07. Figure 6 shows some of the QQ plots. On the left are
the power-transformed tests under model 1 using two different values, then standardized. The
middle plot is for model 2, using three values for d. In that case d = 0.22 works well in the right
tail. (Remember that the Wilson-Hilferty transformation of a χ2 random variable to approximate
normality has d = 1/3.) Point-wise confidence bands are based on Engler and Nielsen (2009).

Next, we simulate the means and standard deviations from the transformed test at sample
sizes 60, 100, 125, 150, 200, 250, 500, 1000 for ε in {0.01, 0.03, 0.05, 0.07, 0.10, 0.15, 0.20} us-
ing 10 000 replications, provided ⌊εT ⌋ ≥ 5. Finally, a response surface is fitted to these 44
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Coefficients for m and s equations

Model d m, s 100/T (100/T )2 ε ε1/2 1

0 0.15 m(T, ε) = −0.00494 0.00326 −0.0413 −0.152 1.30
0 0.15 s(T, ε) = 0.0103 −0.00104 0.00804 0.0457 0.0814

1 0.12 m(T, ε) = −0.00722 0.00494 −0.0407 −0.0597 1.25
1 0.12 s(T, ε) = 0.00880 −0.000628 −0.0104 0.0281 0.0570

2 0.22 m(T, ε) = 0.0270 −0.00327 −0.0299 −0.472 1.31
2 0.22 s(T, ε) = 0.0101 −0.00126 −0.0210 0.143 0.165

3 0.07 m(T, ε) = −0.00198 0.00264 −0.0539 −0.0359 1.17
3 0.07 s(T, ε) = 0.00547 −0.000674 0.0139 0.0118 0.0250

Table 1: Parameters m, a for the approximation to the mean and standard deviation of the trans-
formed statistic.

‘observations’. The p-values are computed from the approximating standard normal cdf:

papp(T, ε; d) =

 1− Φ
(
[supFMAX]

d−m(T,ε)
s(T,ε)

)
if d > 0,

1− Φ
(
log[supFMAX]−m(T,ε)

s(T,ε)

)
if d = 0.

(19)

The values of d, m, and s depend on the model, and are listed in Table 1.
These 40 numbers in Table 1 replace several pages of tables, allowing the computation of

critical values and p-values for the right tail of the distribution. The benefit of the approximation
is that all replications enter the calculations, while 1% critical values would only be based on 100
for 10 000 replications. There are no further parameters in supFMAX that need to be calibrated.

5 Simulations of tests for a single break at an unknown date

The size and power of the proposed test statistic is evaluated, and compared to three other pro-
cedures.

Experiments to evaluate the size are for DGP (8) under the null of no break and with a range
of values for ρ while ζ = θ = 0 initially. Table 2 reports the empirical rejection frequencies at
a 5% nominal size of the tests (14), (15), and (18). supFBPN is listed in the last four columns of
the table, which is the BP test without any corrections; supFBPQ is in the middle, and uses the
quadratic spectral method with standard prewhitening; the new test is in the first four columns
(after the value of ρ). All tests use the same critical values from the distribution approximation
for T = 100. As expected, supFBPN only works for ρ = 0, although the size is somewhat on the
low side at this sample size. supFBPN works for small autoregressive values, but is already far
from the nominal size for ρ = 0.9. supFMAX has the correct size throughout, except that it is a
bit high near 10% for models 2 and 3 in the I(1) case.
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Model 0 1 2 3 0 1 2 3 0 1 2 3

ρ supFMAX supFBPQ supFBPN

0.0 0.057 0.056 0.062 0.043 0.052 0.056 0.074 0.053 0.032 0.031 0.048 0.021
0.5 0.058 0.054 0.060 0.045 0.067 0.081 0.092 0.078 0.427 0.505 0.413 0.563
0.9 0.050 0.054 0.031 0.061 0.205 0.257 0.233 0.312 0.963 0.983 0.914 0.995
1.0 0.051 0.046 0.114 0.089 0.553 0.427 0.467 0.537 0.998 0.997 0.977 1.000

Table 2: Size of test for break at unknown date at 5% nominal size, T = 100, ε = 0.1, 10 000
replications.

Model 0 1 2 3

T method supFMAX

100 papp(100, 0.1) 0.057 0.056 0.062 0.043
100 papp(1000, 0.1) 0.071 0.070 0.083 0.067

1000 papp(1000, 0.1) 0.051 0.054 0.058 0.040
1000 BP Table II 0.070 0.127 0.015 0.086

Table 3: Impact of choice of critical values on size of test for break at unknown date at 5%
nominal size, ρ = 0,ε = 0.1, 10 000 replications.

Table 3 takes a brief look at the impact of using different critical values. It confirms that
the robustness adjustments do affect the small sample distribution, with the effect disappearing
for T = 1000. The approximation (19) is tailored for supFMAX, and the small sample ad-
justment helps controlling the size. The critical values of BP Table II (or Table I, as the first
columns are the same) only apply to model 0, but still work fairly well in model 3. For model
0, the 0.1, 0.05, 0.01 critical values from papp(∞, 0.05) are 8.64, 10.13, 13.52 respectively, and
9.05, 10.76, 14.73 for papp(100, 0.05) This can be compared to 8.02, 9.63, 13.58 in Table I of
BP.

Table 4 adds three other existing procedures for comparison. PY is the test of Perron and
Yabu (2009), HLT the test of Harvey, Leybourne, and Taylor (2010), and SV the J version of
Sayginsoy and Vogelsang (2011) with the Daniell kernel. Critical values3 for PY are the largest
of the I(0) and I(1) entries in Perron and Yabu (2009, Table 2).

HLT has rather poor size control in Table 4, ranging from undersized with iid normal errors
and oversized for I(1) errors. SV is also undersized for ρ = 0 but correctly sized for I(1)
errors. PY is substantially oversized, except for model 2 close to the unit root, even though, as

3There is a difference between the published procedure and the GAUSS implementation at
blogs.bu.edu/perron/codes: the former does the BIC lag length selection in the equation for the
residuals, the latter in the equation for yt. We follow the code, but do not copy a minor counting error in the
computation of the test.
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Model 1 2 3 1 2 3 2 3 2 3

ρ supFMAX PY HLT SV

ζ = 0.0 at 10% nominal size
0.0 0.105 0.114 0.086 0.141 0.119 0.143 0.018 0.041 0.047 0.024
0.5 0.095 0.099 0.074 0.166 0.113 0.162 0.027 0.045 0.061 0.049
0.9 0.079 0.046 0.083 0.168 0.027 0.092 0.053 0.062 0.054 0.055
1.0 0.067 0.177 0.117 0.155 0.139 0.191 0.244 0.244 0.100 0.125

ζ = 0.0 at 5% nominal size
0.0 0.056 0.062 0.043 0.087 0.065 0.096 0.009 0.020 0.016 0.009
0.5 0.054 0.060 0.045 0.109 0.065 0.117 0.016 0.025 0.022 0.017
0.9 0.054 0.031 0.061 0.098 0.020 0.069 0.036 0.040 0.026 0.021
1.0 0.046 0.114 0.089 0.085 0.086 0.136 0.175 0.175 0.056 0.060

ζ = 0.0 at 1% nominal size
0.0 0.014 0.015 0.013 0.030 0.019 0.036 0.003 0.005 0.001 0.000
0.5 0.017 0.019 0.013 0.045 0.024 0.052 0.005 0.008 0.002 0.001
0.9 0.027 0.016 0.035 0.039 0.013 0.039 0.017 0.021 0.004 0.002
1.0 0.024 0.050 0.058 0.033 0.040 0.072 0.095 0.096 0.012 0.011

ζ = 0.5 at 5% nominal size
0.0 0.011 0.000 0.004 0.077 0.051 0.103 0.002 0.007 0.002 0.000
0.5 0.012 0.000 0.004 0.074 0.043 0.105 0.008 0.011 0.035 0.011
0.9 0.000 0.002 0.001 0.057 0.012 0.027 0.022 0.024 0.015 0.024
1.0 0.003 0.105 0.017 0.054 0.123 0.152 0.239 0.240 0.034 0.076

Table 4: Size of test for break at unknown date, T = 100, ε = 0.1, 10 000 replications.

recommended, we use the largest critical values here. Overall, it appears that supFMAX is best
behaved.

The bottom part of Table 4 introduces second order serial correlation. This makes supFMAX

undersized for models 2 and 3 (except I(1) model 2), so it would need adjustment to handle this
better. For PY, SV and HLT, the rejection frequencies in the stationary models are mostly smaller
than with ζ = 0, but for the non-stationary cases the size moves in the opposite direction.

supFMAX is the only test with correct size under the most basic case, i.e. with iid errors,
which is combined with a size under I(1) errors that is reasonably close to nominal. The widely
different size properties of the other procedures makes it more difficult to compare power. In
Table 5 we use the fact that we have the complete tail of the distribution approximated. We
select a nominal size of supFMAX which gives an empirical rejection frequency under the null
that is close to that observed for PY, SV, and HLT. This allows us to make pairwise comparisons,
with supFMAX effectively size corrected towards the other procedure. The adopted nominal size
is listed in the rows with header αc. The first part of the table has ρ = 0, and a trend break with
coefficient 0.04. Model 3 also has a level shift of unity at the same point. We see that HLT has
lower power, but otherwise the procedures are similar.
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Model 2 3 2 3 2 3 2 3 2 3 2 3

PY supFMAX HLT supFMAX SV supFMAX

I(0): ρ = 0.0, η1 = 0 (model 2) or η1 = 1 (model 3), η2 = 0.04

rejection 0.76 0.87 0.70 0.78 0.27 0.30 0.47 0.66 0.65 0.57 0.70 0.56
at αc 0.05 0.05 0.05 0.10 0.10 0.10 0.01 0.04 0.10 0.10 0.05 0.02

I(1): ρ = 1, η1 = 0 (model 2) or η1 = 3 (model 3), η2 = 0.5

rejection 0.38 0.63 0.35 0.35 0.53 0.50 0.53 0.42 0.18 0.28 0.35 0.31
at αc 0.01 0.01 0.01 0.02 0.01 0.01 0.04 0.05 0.05 0.05 0.01 0.01

Table 5: Power of test for break in trend at unknown date at matching nominal size αc, T =
100, ε = 0.1, 10 000 replications, ζ = 0. Break in DGP at t = 50.

The next part of Table 5 is for ρ = 1. Then it is much more difficult to detect a trend, and the
DGP parameters are adjusted accordingly. Two entries stand out: SV has low power for model
2, and PY has high power for model 3.
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6 Multiple break tests

Testing for multiple breaks commences with testing for no break, and, if that is rejected, proceeds
to the hypothesis of two breaks given one. We argue that the asymptotic distributions that are
tabulated in the literature do not correspond to the proposed procedure. We also simulate the
properties of test procedures for up to three breaks in the DGP.

We limit ourselves to the expanding sequence of tests for m breaks given m − 1 breaks,
denoted F (m|m− 1). The adopted approach is proposed by Bai and Perron (1998), which can
be described without being specific about which version is used for F (1), the test for a single
break.

In each case, the first objective is to set M as the largest number of breaks to consider, and
estimate the break sets that minimize RSS: B̂(1), ..., B̂(M). Section 2 discussed procedures
to obtain these sets, and we use the proposed algorithm in the results below. Note that, when
moving from one to two breaks (say), the set is not conditional on the single break, but re-
estimated for two breaks. This is particularly useful if the first set is too small and wrongly
estimated, but the test nonetheless rejects the null hypothesis.

For the sequence of tests, BP propose a sample splitting algorithm: for m breaks, cut the
sample at the optimal break set for m − 1 breaks. Then compute test F (1) in each subsample;
if there is no space to insert a further break, that segment is ignored. The maximum of these
m tests is the statistic of interest, F (m|m − 1). The convenience of this approach is lost if the
expression for F (1) is made to depend on m.

The asymptotic distribution for this sequential procedure is shown to be the m-th power
of the test for a single break. This asymptotic result assumes that ε is kept fixed. In practice,
however, the minimum sample size (i.e. the gap between breaks), is kept fixed as the sample
shrinks, so that ε grows accordingly. This is how the dynamic programming algorithm BP03
works, and also adopted in the proposed algorithm (although this could be changed). Further
discussion of this issue is given in Appendix B, together with normal approximations to the
distributions when F (1) = supFMAX.

The simulation experiments allow for up to three breaks, equally spaced in the sample, using
DGP (9) with ζ = θ = 0 and a range of values for ρ. With M∗ denoting the number of breaks
in the DGP, we use:

Model 0: ν1 = 3ιM∗ , ν2 = 0,
Model 1: ν1 = 3ιM∗ , ν2 = 0,
Model 2: ν1 = 0, ν2 = 0.5ιM∗ ,
Model 3: ν1 = 3ιM∗ , ν2 = 0.5ιM∗ ,

where ιM∗ is a vector of ones of length M∗. The optimal break set is found with the new
algorithm, and we apply the sequential procedure for testing.

Two additional procedures are added to the simulations. The first is the Kejriwal and Perron
(2010) extension of PY to sequential testing, denoted PY-KP. We use the PY procedure as de-
scribed in Perron and Yabu (2009), together with the largest of the I(0) and I(1) critical values
in Kejriwal and Perron (2010, Table 1). The second is the Sobreira and Nunes (2016) extension
of Harvey, Leybourne, and Taylor (2010), denoted HLT-SN. We deviate from SN in that we do
not adopt their adjustments to the test. Instead we use the original HLT procedure, so keep the
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supFMAX PY-KP HLT-SN

ρ T 1|0 2|1 3|2 4|3 1|0 2|1 3|2 4|3 1|0 2|1 3|2 4|3

M∗ = 1: 1 break in DGP
0.0 60 1.00 0.06 0.01 0.00 1.00 0.10 0.03 0.01 0.97 0.00 0.00 0.00
0.5 60 0.91 0.07 0.02 0.01 0.80 0.11 0.05 0.02 0.90 0.00 0.00 0.00
0.9 60 0.37 0.09 0.04 0.02 0.38 0.13 0.08 0.04 0.58 0.07 0.02 0.01
1.0 60 0.43 0.11 0.05 0.02 0.46 0.15 0.08 0.04 0.57 0.11 0.03 0.01

0.0 120 1.00 0.06 0.01 0.00 1.00 0.06 0.01 0.00 1.00 0.00 0.00 0.00
0.5 120 1.00 0.06 0.01 0.00 1.00 0.06 0.02 0.00 1.00 0.01 0.00 0.00
0.9 120 0.75 0.06 0.03 0.01 0.77 0.05 0.03 0.01 0.93 0.05 0.02 0.01
1.0 120 0.68 0.09 0.03 0.02 0.70 0.06 0.03 0.02 0.75 0.10 0.03 0.01

M∗ = 2: 2 breaks in DGP
0.0 60 0.97 0.98 0.04 0.01 0.99 0.97 0.07 0.02 1.00 0.14 0.00 0.00
0.5 60 0.82 0.39 0.05 0.01 0.88 0.44 0.09 0.02 0.99 0.10 0.00 0.00
0.9 60 0.80 0.11 0.06 0.02 0.91 0.15 0.10 0.05 0.95 0.09 0.03 0.01
1.0 60 0.78 0.11 0.06 0.02 0.85 0.16 0.11 0.04 0.89 0.12 0.04 0.01

0.0 120 0.98 1.00 0.05 0.01 1.00 1.00 0.04 0.00 1.00 0.98 0.00 0.00
0.5 120 1.00 0.97 0.05 0.01 1.00 0.91 0.04 0.01 1.00 0.84 0.00 0.00
0.9 120 1.00 0.19 0.05 0.02 1.00 0.14 0.05 0.02 1.00 0.27 0.03 0.01
1.0 120 0.98 0.17 0.05 0.02 0.99 0.12 0.05 0.02 0.99 0.23 0.05 0.01

M∗ = 3: 3 breaks in DGP
0.0 60 0.99 1.00 0.48 0.01 1.00 0.99 0.59 0.01 1.00 0.39 0.01 0.00
0.5 60 0.99 0.57 0.11 0.01 1.00 0.63 0.18 0.02 1.00 0.33 0.01 0.00
0.9 60 0.98 0.21 0.04 0.02 1.00 0.29 0.08 0.04 1.00 0.28 0.02 0.01
1.0 60 0.95 0.21 0.04 0.02 0.98 0.28 0.08 0.04 0.99 0.29 0.02 0.01

0.0 120 1.00 1.00 1.00 0.00 1.00 1.00 0.99 0.00 1.00 1.00 0.39 0.00
0.5 120 1.00 0.99 0.64 0.00 1.00 0.95 0.51 0.00 1.00 0.96 0.28 0.00
0.9 120 1.00 0.44 0.06 0.01 1.00 0.35 0.07 0.01 1.00 0.62 0.06 0.00
1.0 120 1.00 0.42 0.05 0.02 1.00 0.36 0.05 0.01 1.00 0.54 0.05 0.01

Table 6: Model 2 rejection frequency of tests F (m|m − 1) for up to three breaks in the DGP;
5% nominal size, T = 60, 120, ε = 0.15, 10 000 replications.

weight adjustment (denoted bξ by SN) fixed at the HLT values, and also do not make the weights
themselves a function of m. We do use the critical values of Sobreira and Nunes (2016, Table 2
and 4), noting that they are based on only 5000 replications.

The sample sizes for testing are 60 and 120. This is in contrast to the larger samples used
in the simulations of KP (120,240,360) and SN (150). The results for model 2 are in Table 6
and for model 3 in Table 7. The tables use ε = 0.15, because that is the only value considered
by SN. The tables report the rejection frequency of testing up to four breaks when the DGP has
from one to three breaks at αc = 5%. Italic columns correspond to a break in the DGP.

For model 2 we see that PY-KP is relatively oversized. As before, the size of HLT-SN when
testing for one break is sensitive to the value of ρ, but seems to have some power advantage for
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supFMAX PY-KP HLT-SN

ρ T 1|0 2|1 3|2 4|3 1|0 2|1 3|2 4|3 1|0 2|1 3|2 4|3

M∗ = 1: 1 break in DGP
0.0 60 1.00 0.05 0.01 0.00 1.00 0.23 0.07 0.03 0.93 0.00 0.00 0.00
0.5 60 0.91 0.08 0.02 0.01 0.91 0.27 0.13 0.05 0.84 0.00 0.00 0.00
0.9 60 0.41 0.12 0.04 0.01 0.70 0.31 0.19 0.08 0.53 0.06 0.01 0.00
1.0 60 0.41 0.14 0.05 0.02 0.72 0.34 0.21 0.08 0.52 0.10 0.02 0.00

0.0 120 1.00 0.05 0.01 0.00 1.00 0.11 0.02 0.00 1.00 0.00 0.00 0.00
0.5 120 1.00 0.07 0.01 0.00 1.00 0.14 0.04 0.01 1.00 0.01 0.00 0.00
0.9 120 0.55 0.11 0.05 0.02 0.86 0.13 0.08 0.03 0.92 0.05 0.01 0.00
1.0 120 0.47 0.13 0.06 0.02 0.83 0.17 0.10 0.03 0.74 0.12 0.03 0.00

M∗ = 2: 2 breaks in DGP
0.0 60 0.66 0.95 0.04 0.01 0.87 0.98 0.20 0.06 0.97 0.09 0.00 0.00
0.5 60 0.35 0.42 0.06 0.01 0.86 0.66 0.22 0.08 0.95 0.06 0.00 0.00
0.9 60 0.40 0.22 0.08 0.02 0.94 0.52 0.26 0.12 0.88 0.07 0.03 0.00
1.0 60 0.45 0.22 0.08 0.02 0.93 0.54 0.26 0.12 0.83 0.09 0.03 0.00

0.0 120 0.76 1.00 0.04 0.00 1.00 1.00 0.08 0.01 1.00 0.96 0.00 0.00
0.5 120 0.46 0.97 0.05 0.01 1.00 0.96 0.10 0.03 1.00 0.81 0.00 0.00
0.9 120 0.59 0.38 0.08 0.03 1.00 0.52 0.11 0.05 1.00 0.22 0.02 0.00
1.0 120 0.71 0.29 0.08 0.04 0.99 0.49 0.13 0.05 0.98 0.20 0.04 0.01

M∗ = 3: 3 breaks in DGP
0.0 60 0.73 0.95 0.50 0.00 0.99 0.99 0.76 0.01 1.00 0.10 0.02 0.00
0.5 60 0.43 0.54 0.13 0.00 0.99 0.84 0.43 0.03 1.00 0.12 0.02 0.00
0.9 60 0.43 0.33 0.07 0.01 1.00 0.70 0.38 0.04 0.99 0.17 0.01 0.00
1.0 60 0.49 0.32 0.08 0.01 0.99 0.70 0.40 0.05 0.97 0.19 0.01 0.00

0.0 120 0.97 1.00 1.00 0.00 1.00 1.00 0.98 0.00 1.00 0.90 0.45 0.00
0.5 120 1.00 0.99 0.63 0.00 1.00 0.98 0.62 0.01 1.00 0.79 0.26 0.00
0.9 120 0.96 0.57 0.20 0.02 1.00 0.76 0.31 0.02 1.00 0.50 0.06 0.00
1.0 120 0.93 0.49 0.17 0.02 1.00 0.73 0.31 0.03 1.00 0.47 0.05 0.00

Table 7: Model 3 rejection frequency of tests F (m|m − 1) for up to three breaks in the DGP;
5% nominal size, T = 60, 120, ε = 0.15, 10 000 replications.

larger ρ. When testing for two breaks given one, when there are indeed two breaks we see that
HLT-SN has no power at T = 60, recovers at T = 120. Arguable T = 60 is more relevant
for annual data. The same happens for three breaks when there are three, but now it persists for
T = 120.

Finally, we look at the rejection frequencies for different values of ε: Table 8 shows ε = 0.1
and ε = 0.05 when there are two breaks in the DGP; Table 7 has ε = 0.15. The rejection
frequency is lower for smaller ε. This is particularly pronounced for PY-KP, where too many
breaks are accepted.

Our preference from these results tends towards supFMAX.
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supFMAX PY-KP

model 2 model 3 model 2 model 3

ρ ε 2|1 3|2 4|3 2|1 3|2 4|3 2|1 3|2 4|3 2|1 3|2 4|3

M∗ = 2: 2 breaks in DGP
0.0 0.05 1.00 0.06 0.04 0.70 0.06 0.03 1.00 0.11 0.08 1.00 0.27 0.21
0.5 0.05 0.97 0.07 0.06 0.34 0.08 0.07 0.94 0.14 0.14 0.98 0.33 0.34
0.9 0.05 0.17 0.11 0.12 0.52 0.17 0.17 0.18 0.19 0.22 0.61 0.42 0.51
1.0 0.05 0.17 0.14 0.12 0.66 0.21 0.21 0.18 0.21 0.23 0.59 0.49 0.55

0.0 0.10 1.00 0.05 0.01 0.74 0.06 0.01 1.00 0.08 0.02 1.00 0.20 0.06
0.5 0.10 0.98 0.07 0.03 0.40 0.08 0.02 0.94 0.10 0.04 0.98 0.26 0.13
0.9 0.10 0.19 0.09 0.05 0.56 0.15 0.08 0.16 0.13 0.08 0.59 0.29 0.22
1.0 0.10 0.18 0.10 0.05 0.69 0.17 0.10 0.16 0.13 0.08 0.56 0.33 0.24

Table 8: Model 2 and 3 rejection frequency of tests F (m|m − 1) for up to three breaks in the
DGP; 5% nominal size, T = 120, 10 000 replications.

20



1960 1970 1980 1990 2000 2010 2020

5

6

7 Africa

Western and 
        Central

Eastern 
and Southern

1960 1970 1980 1990 2000 2010 2020

2

4

6

Asia and Central, South America

Arab
  World

LAC

East Asia 
      & Pacific

1960 1970 1980 1990 2000 2010 2020

1.5

2.0

2.5

European Union

1960 1970 1980 1990 2000 2010 2020

2.0

2.5

3.0

3.5

North America

Figure 7: Trend estimates of fertility for 6 regions of the world. LAC is Latin America & Caribbean.
Model 2 supFMAX tests with ε = 0.1, αc = 0.01.

7 Testing for breaks in fertility data

We test for broken trends in fertility using data from the World Bank, considering annual data
for the period 1960 to 2020.

The fertility data is taken from the World Bank database (indicator SP.DYN.TFRT.IN),
which provides annual data from 1960 to 2020 for most countries, as well as regions of the
globe, and some subdivisions by income groups. However, in a subset of domains the data con-
sists of lower frequency observations with interpolation in between. The fertility rate is defined
as the ‘the number of children that would be born to a woman if she were to live to the end
of her childbearing years and bear children in accordance with age-specific fertility rates of the
specified year’. Preliminary visual inspection suggests that there has been a noticeable change
in the underlying trends, at least in several countries.

The analysis is restricted to 192 individual countries with data, 12 regions of the world, and
the entire world. We first note that with supFBPN all but 10 countries appear to have at least
two trend breaks when testing at αc = 1%. This reduces to 46 with supFBPQ, and 27 with
supFMAX. We adopted ε = 0.1 to have at least 6 observations in a partial trend, and allow up
to three breaks. The remaining results all use supFMAX. We use model 2 for testing, because a
simultaneous level and trend break seems implausible in this case.

Figure 7 shows the estimated trends for 7 of the 13 regions. Four have breaks: the null
hypothesis of no break is rejected. In the case of Africa there are two breaks in each, although
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Germany United Kingdom

Start supFMAX p-value supFMAX p-value

1960 6.3150 0.083 4.8432 0.158
1961 7.7094 0.046 8.0737 0.039
1962 10.224 0.016 12.639 0.006
1963 14.142 0.004 19.988 0.000
1964 18.320 0.001 23.809 0.000
1965 28.428 0.000 23.535 0.000
1966 40.155 0.000 22.383 0.000

Table 9: Model 2 tests for one break in fertility using different starting dates for the estimation
sample.

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020

1.5

2.0

2.5

3.0

Germany

United Kingdom

Figure 8: Break found in fertility for the UK and Germany when discarding the initial 5 observations.

the data looks heavily interpolated. They appear I(2) and the trends approximate the curves;
Western and central Africa shows a trend reversal around 1981.

The downward trend for European Union did not start until about 1967. Several European
countries show a few years of upward trend, before a rapid decline in fertility during the second
half of the 1960s and the 1970s. This data feature plays havoc with the test: the initial segment
is too short to be considered as a separate trend with ε = 0.1. When reducing ε to 0.05, the new
RSS minimization algorithm puts the dates for one and two breaks in the right place, but the test
for one break is insignificant. Table 9 moves the start of the sample one observation forward at
a time. It shows how the test suddenly becomes highly significant. Seven European countries
exhibit this effect: Austria, France, Germany, Italy, Luxembourg, Norway, and the UK. This is
a situation where some judgment is required, see Figure 8, which depicts the fertility in the UK
and Germany, starting from 1965.

If we look in more detail at the eight largest EU countries, we find that half have a break, see
Figure 9. Visually, the downward trends in fertility started in the early to mid 1960s. That period
saw many changes in society, as well as major advances in contraceptive technology, giving more
control to women of reproductive age. The first oral contraceptive was approved in the United
Status in 1960 (only for married women until 1972), and 1962 in the United Kingdom; by 1968
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Figure 9: Fertility of 8 largest EU countries, with break on the left, no break found on the right.

each had approved eight first-generation oral contraceptives, see Gelijns and Pannenborg (1993).
In addition, the mid 1960s and 1970s saw rapid development of intrauterine devices, while
surgical procedures also improved. Mauldin and Segal (1988) find that the fertility rate declines
with contraceptive prevalence, to the extent that a 14 percent increase in married women of child-
bearing age practicing contraception reduces fertility by one child. This effect is somewhat lower
for the crude birth rate, which they consider an inferior measure because it depends on the age
structure of the population. However, we also see a well-defined end to the downward trends
in fertility, which could mean that the previously unmet demand for contraception was largely
satisfied after a period of 10 to twenty years.

Trend breaks are less prominent in the crude birth rates (World Bank id SP.DYN.CBRT.IN),
defined as the number of live births occurring during the year per 1000 population at midyear.
While the secular patterns are very similar, the break is only significant for the European Union,
Figure 10. For the eight largest EU countries the first change is the Netherlands, where the break
now has a p-value of 1.6%. As happened before, starting five observations later reduces the
p-value to 0.02%. The other change is that for France two breaks given one is not rejected, as
can be seen from Figure 11. For Italy the second break is marginal with a p-value at 2.2%.

In general, the statistical tests suggest a significant downwards trend from the mid to early
1960’s through the 1970s in many western countries, followed by a break and pronounced lev-
elling off.

8 Conclusions

We studied test procedures for multiple trend breaks. The specification where the trend breaks,
in the presence of a fixed level was deemed more empirically relevant than the model in which
there is a level shift and local trend changing at the same time. An algorithm to minimize the
residual sum of squares was developed, which, in particular, is valid for the former specification,
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Figure 10: Trend estimates of crude birth rates for 6 regions of the world. LAC is Latin America &
Caribbean. Model 2 supFMAX tests with ε = 0.1, αc = 0.01.
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Figure 11: Crude birth rates of 8 largest EU countries, with break on the left, no break found on the
right.

but can be used in the other cases as well. We introduced a test that can be seen as a simplified
version of an existing test, and provided an approximation to the distribution for small and large
sample sizes. The test was shown to have decent small sample properties, even when the errors
are I(1).

The focus of this paper is mainly on practical aspects to help implementation and empirical
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applications. It is asserted that the approach fits in the asymptotic frameworks of the existing
literature, but leave formal analysis to subsequent work.

We studied fertility for all countries of the world using the new test, with significant changes
in trend found in four of the largest countries of the European Union, as well as Canada, the
United Kingdom, and the United States. For high fertility countries, the data is usually interpo-
lated, and too smooth. That pattern often resulted in an upward trend, followed by one or more
downward ones. The method employed imposes a minimum length of the trend, often set to ten
or fifteen percent of the sample. For fertility that corresponds to six or nine years, so it will be a
while before we can study the impact of the Covid pandemic in this way.

A An algorithm to find break dates

The first requirement is to get an efficient method to estimate model (2) by OLS at all possible
break points s. Start by writing it in matrix form as

y =Dβ +X(s)ψ(s) + u(s). (20)

Where D has q columns holding dt as well as all additional non-breaking regressors. X(s) is
T × k. Take the thin QR decomposition (Golub and Van Loan, 2013, Ch.5):

DP = QR,

where P is the matrix that rotates columns ofD,Q is of dimension T × q and orthogonal such
thatQ′Q = Iq, andR is q × q with zeros below the diagonal. Then the transformed system is:

Q′y = RP ′β +Q′X(s)ψ(s) + ũ.

This shows that the (reordered) β coefficients are solved from the first q observations of the
transformed system, with residuals zero. (For reduced rank regressors q is reduced.) The ψ(s)
coefficients are estimated from the remaining observations in a regression onQ′X(s). Because
we are only interested in the RSS, we can compute that directly from this regression, without the
need to undo the pivoting or transformation. So with this approach we can relatively efficiently
solve:

ŝ = arg min
s∈[T0,T1]

{RSS(s)| y =Dβ +X(s)ψ(s) + u(s)} . (21)

So, while we require a regression at each break point, this only has k regressors, regardless
of q (k = 1 except for model 3 where it is 2). This allows us to formulate the core of the new
algorithm:

Core[Bj(m), G]:

Given a set of m breaks Bj(m) do for each break i = 1, ...,m:

1. Construct a set without break i: Bj(m\i).
2. Find index ŝi from solving (21) conditional on breaks B(m\i), only allowing break

dates that are more than G observations away from the dates in Bj(m\i).
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3. Insert ŝi at position i to construct the new break set Bj+1(m).

Unlike the BP03 algorithm, it is not straightforward to satisfy spacing between breaks. Be-
cause the objective function is not smooth, we gradually grow G during iteration until it is
sufficiently large.

New algorithm:

1. Solve (21) to find the first break, and so B̂(1). (initialization)

2. For m = 2, ...,M (loop over expanding break sets)

(a) Set B0(m) = {T, B̂(m− 1)}, G = 1

(b) For j = 1, ..., J : (iteration over this break set)
Bj(m) = Core[Bj(m), G] (update break set)

If G < ⌊εT ⌋ set G = min{G+ 2, ⌊εT ⌋} and continue with next j.
If |RSS[Bj−1(m) − RSS[Bj(m)]| ≤ ϵ1RSS[Bj(m)] continue with next m, un-
less there is no space left between breaks.
Otherwise continue with next j.

Convergence requires that the desired gap between breaks is reached, and no further progress
is made. We set ϵ1 = 10−12 and maximum number of iterations J = 20.

B The role of ε in the sequential test and approximations to the
distribution

The ε value controls the spacing between breaks, and how this is handled matters in the sequen-
tial test with sample splitting. It is perhaps most easily explained with an example using ε = 0.1
and observations t = 1, ..., T = 100. Then εT = 10 and RSS is minimized with the break
date candidates in εT, ..., T − εT + 1, so 10, ..., 91 here. In other words, for RLS the smallest
segment has 10 observations.

For the next step, assume we established a break at B̂(1) = {40}, and move to the test for two
breaks. We evaluate the test in the first sample, t = 1, ..., 40, and in the second, t = 41, ..., 100.
Now the choice of ε in these two smaller samples matters. The RSS minimization algorithm
enforces a separation of εT = 10, so if the break at forty survives, the two-break set has the
form B̂(2) = {40, A} where A cannot fall on observations 1, ..., 9, 32, ..., 49, 92, ..., 100. So,
when we compute the test for one break in each subsample, the value of ε needs to be adjusted
to respect this.

This matters in practice and in theory. If there is a second break before 40 closer to the end
than the gap allows, and the test uses ε = 0.1 in the subsample (i.e a smallest segment of 4),
then this date will determine the test outcome. However, it is not a date that can be reached. In
that case, the sequential test will keep rejecting more and more breaks until it runs out of space.

The solution is to adjust the effective ε used in each subsample to respect the minimum seg-
ment size of εT . This is automatically done when the BP03 algorithm or the proposed algorithm
is used to provide the date for the test. However, while the Bai & Perron GAUSS code works
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this way, the literature tends to differ. E.g. Kejriwal and Perron (2010, §3.1) keeps ε fixed. This
does affect the asymptotic distribution, suggesting that the published tables do not apply to the
sequential procedure when using the suggested break detection algorithms.

The same procedure as in §4 is used to simulate the distribution of the sequential test
F (m|m − 1). The test F (2|1) is simulated under the null by splitting the sample in half, and
taking the maximum of the 1-break test in each sample using cut-off 2ϵ. Then for F (3|1) the
sample is split in three, and the maximum taken for each subsample with cut-off 3ϵ, etc. A re-
sponse surface is fitted to the means and standard deviations from the transformed test at sample
sizes 60, 100, 125, 150, 200, 250, 500, 1000 for ε in {0.01, 0.03, 0.05, 0.07, 0.10} using 10 000
replications, provided ⌊εT ⌋ ≥ 5. F (5|4) excludes ε = 0.1. The results are in Table 10.
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Coefficients for m and s equations

Model d m, s 100/T 1002/T 2 ε ε1/2 ε100/T 1

2 breaks given 1
0 0 m(T, ε) = 0.00954 0.00398 0 −0.120 −0.0814 1.22
0 0 s(T, ε) = 0.0102 0 0 0.0363 0 0.0418

1 0 m(T, ε) = 0.0770 0.0489 0 −0.593 −0.681 2.06
1 0 s(T, ε) = 0.0931 0 0 0.189 0 0.320

2 0.30 m(T, ε) = 0.0582 0 0 −0.499 −0.213 1.36
2 0.30 s(T, ε) = 0.0138 0.00973 0 0.137 0 0.126

3 0 m(T, ε) = 0.0936 0.0415 −2.26 0 0 2.30
3 0 s(T, ε) = 0.0750 0.0140 0 0.271 0.119 0.256

4 breaks given 3
0 0 m(T, ε) = 0.187 0.0875 0 −1.15 −1.85 2.08
0 0 s(T, ε) = 0.0976 0.0214 0.419 0.191 0 0.324

1 0 m(T, ε) = 0.210 0.0684 −1.83 0 −1.34 2.10
1 0 s(T, ε) = 0.107 0.0211 0 0.242 0 0.284

2 0.20 m(T, ε) = 0.103 0 −0.479 −0.406 −0.361 1.40
2 0.20 s(T, ε) = 0.0280 0.0164 0.150 0.0930 0 0.118

3 0 m(T, ε) = 0.296 0.0638 −2.91 0 −0.955 2.37
3 0 s(T, ε) = 0.133 0.0243 0.838 0 0 0.251

3 breaks given 2
0 0 m(T, ε) = 0.229 0.159 −3.48 0 −2.62 2.06
0 0 s(T, ε) = 0.141 0.0219 0.982 0 0 0.317

1 0 m(T, ε) = 0.327 0.110 −6.91 1.72 −2.40 2.03
1 0 s(T, ε) = 0.168 0.0146 1.57 −0.371 0 0.317

2 0.15 m(T, ε) = 0.125 0.0160 −1.72 0 −0.563 1.39
2 0.15 s(T, ε) = 0.0562 0.0222 0.464 0 −0.165 0.118

3 0 m(T, ε) = 0.490 0.102 −7.32 1.42 −2.28 2.30
3 0 s(T, ε) = 0.165 0 0.834 0 0.757 0.243

5 breaks given 4
0 0 m(T, ε) = 0.0870 0.0829 −1.16 0 −0.957 1.53
0 0 s(T, ε) = 0.0643 0.0280 0.234 0 −0.237 0.0929

1 0 m(T, ε) = 0.0633 0.0235 −0.356 0 −0.531 1.25
1 0 s(T, ε) = 0.0235 0.00823 0.0652 0 0 0.0349

2 0.10 m(T, ε) = 0.193 0 −2.05 0 −0.708 1.40
2 0.10 s(T, ε) = 0.0494 0.0462 0 0.176 0 0.102

3 0 m(T, ε) = 0.711 0.139 −4.39 0 −3.47 2.46
3 0 s(T, ε) = 0.195 0.0366 1.02 0 0.623 0.232

Table 10: Parameters m, a for the approximation to the mean and standard deviation of the
transformed statistic for testing F (m|m− 1),m = 2, ..., 5 using supFMAX.
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