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Product-mix auctions are sealed-bid mechanisms for trading multiple divisible or indivis-
ible units of multiple differentiated goods. They implement competitive-equilibrium alloca-
tions when these exist, based on the bids that participants make in a simple geometric lan-
guage. All concave substitutes (respectively, strong-substitutes) valuations can be uniquely
represented, and no other valuations can be represented, by bids in the corresponding version
of this language. This provides new characterisations of ordinary substitutes, and of strong
substitutes, when goods are indivisible. We discuss implementation of the auctions, and ex-
tensions and variants of the language, e.g., allowing for budget constraints.
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1. INTRODUCTION

This paper develops the theoretical underpinnings, and further extensions, of the product-mix
auction design that was originally developed for the Bank of England in 2007-8.

Product-mix auctions (PMAs) are easy-to-use, single-round, sealed-bid mechanisms to sell
or procure multiple differentiated goods. Each good may be either divisible, or available in
multiple indivisible units. The auctions allow both the bidders and the auctioneer to express
rich preferences about how the allocations they receive depend on the auction prices.1

PMAs implement competitive (i.e., Walrasian) equilibria when these exist, assuming partic-
ipants express their preferences accurately.2

PMAs can thus obtain close to efficient results when bidders’ strategic behaviour is not a first-
order concern. Although most auction research emphasises game-theoretic issues of strategic
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2Alternative versions of the PMA implement the competitive equilibrium allocations based on the reported pref-

erences, but then use a different pricing rule than charging the competitive equilibrium prices. (E.g., Finster (2021)
experimentally tests discriminatory pricing in a PMA.) However, competitive pricing usually provides good incentives
for truthful bidding.

Note that the auctioneer can make the PMA a profit-maximising auction by misrepresenting her own preferences,
as we discuss below.
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interaction among bidders with asymmetric information, these issues are often not very impor-
tant, in particular, when there are many bidders. If no bidder’s demand is too large a fraction of
the market’s, competitive equilibrium prices approximate Vickrey pricing which, in the right
circumstances, induces truthful reporting of preferences, and so permits efficient allocations.3

However, inducing accurate reporting is not just a matter of incentives. Importantly, PMA
“bidding languages” are easy to understand and use–—they break down complex preferences
into small pieces—thus allowing bidders (and the auctioneer) to accurately express their pref-
erences in a wide range of contexts.

Because PMA bidding languages are geometric in basis, we can draw simple diagrams that
help participants to visualise the auctions, and to understand how prices and allocations are
determined.4 The geometric approach also facilitates the analysis of the auctions, and allows
us to develop results about how different classes of preferences can be represented.

Practical bidding languages must balance simplicity that encourages participation against
precision in what participants can express. So different PMA languages will be appropriate for
different contexts.

Whichever PMA language is used, each bidder submits a set of bids that, taken together,
express her preferences. The PMA then determines a price for each good, and allocates each
bidder a bundle that maximises her utility at these prices, assuming she reported her preferences
accurately.

Most naturally, the bidders also pay these prices for the goods in their bundles (so also every
recipient of any quantity of any good pays the same per-unit price for that good)—and this
incentivises (approximately) truthful behaviour by bidders whose demands are not too large
relative to the auction’s supply. However, alternative pricing rules are possible (see note 2
above).

An important feature of the PMA is that it gives the auctioneer flexibility about how the
quantities sold depend on expressed demand. Moreover, the auctioneer need not behave com-
petitively. It will do if (like the Bank of England, for whom the PMA was originally designed)
its objective is social efficiency. But it can use its monopoly power and choose a “supply func-
tion” that does not reflect its true preferences, or even choose supply after seeing the bids, to
pursue an alternative objective such as profit.5

Section 2 introduces the substitutes PMA language that is the main focus of our paper. We
introduce and analyse it in its general form; practical implementations are likely to use simpli-
fications of it. The strong-substitutes PMA language is a straightforward simplification. Further
simplifications are easy to make, and have been made in, for example, the Bank of England’s
application.6

3Grace (2024a)’s empirical work finds that competitive behaviour is a better model than Nash equilibrium for
the Bank of England’s PMAs (which charge all bidders the prices that support competitive equilibrium, assuming
bidders express preferences truthfully); and Milton Friedman assumes bidders bid truthfully in uniform-price Treasury
auctions (which are a very simple special case of the Bank of England’s PMA) in his (1959, 1963, 1991) arguments
for uniform pricing. However, strategic behaviour is, of course, important in many contexts. Finster (2020) models
strategic behaviour in a PMA; Holmberg et al. (2019)’s model can also be interpreted in this way.

4The set of bids that any individual bidder makes is simply a list of vectors, in which each vector expresses a
component of her preferences.

5The allocation of goods among bidders will still be (approximately) efficient, assuming uniform pricing and that
no bidder’s demand is too large relative to supply. The Icelandic Government aimed to maximise profit in its proposed
PMA (see Section 5.5).

6These languages were originally developed by Klemperer (2008), responding to the Governor of the Bank of
England’s 2007 request for a mechanism to allocate central-bank funds to bidders who would be permitted to offer
different qualities of collateral. The context was that the UK suffered its first bank run for 140 years in September
2007 in an early sign of the financial crisis. Efficiency required charging different “prices” (i.e., different interest
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Our languages can be used by buyers or sellers, or traders who may be on either or both sides
of the market depending on prices.

Section 3 gives the representation theorem that is the main contribution of this paper: all
concave7, quasilinear, substitutes preferences can be represented, and can be uniquely repre-
sented, by sets of bids in the substitutes PMA language. An immediate corollary is that all
quasilinear, strong-substitutes preferences8 can be uniquely represented by sets of bids in the
strong-substitutes PMA language. We explain the intuition for our results by describing the
proof for multiple units of each of two goods in the context of a simple example. We sketch the
additional arguments needed for the general case, but defer the full details to the Appendix.

Section 4 complements these results by identifying in a simple way which sets of substitutes
PMA bids represent a (concave) valuation. These are the sets of bids that bidders are permitted
to make in a PMA; we call them “valid”. We show that any valid set of substitutes PMA
bids represents a substitutes valuation, and that any valid set of strong-substitutes PMA bids
represents a strong-substitutes valuation. So there is a one-to-one correspondence between valid
sets of substitutes PMA bids and (concave) substitutes valuations, and between valid sets of
strong-substitutes PMA bids and strong-substitutes valuations.9

The PMA languages therefore provide new characterisations for indivisible goods of both
ordinary substitutes and strong substitutes, and so—especially because our characterisations
are as the sum of small, simple, pieces—gives us new ways to understand these classes of
preferences. To our knowledge, no other language proposed for these preferences can represent
the entirety of either class while representing no more than that class.10

Since our proof of our representation theorem is constructive, it leads naturally to straight-
forward algorithms that allow a bidder to create the set of bids that represent her preferences
by responding to a list of questions that elicit her demand at different prices.

Section 5 discusses the implementation of PMAs using these bidding languages, including
the Bank of England’s implementations of its PMAs.

Our language is “compact” in that many valuations can be expressed using only a small
number of bids. However, we describe how predefining sets of bids–we call these sets of bids
“words”—can allow to express natural preferences even more concisely.

rates) for different loans; setting wrong prices would both mis-allocate funds in the current auction and incentivise
undesirable activities such as commercial banks over-investing in “toxic assets”. The Bank of England implemented
simplified versions of Klemperer (2008); these auctions are currently run weekly and have been used to auction
approximately £240 billion in repos.

7Concavity keeps our language simple. (E.g., a bid that expresses a willingness to pay (up to) a per-unit price
p for 100 units will imply that, if the per-unit price is exactly p, then the bidder is indifferent between buying any
number of units between 0 and 100.) Moreover, we are particularly focused on contexts where we can find competitive
equilibrium, for which concavity is important.

8Strong substitutes is the terminology coined by Milgrom and Strulovici (2009). It is, by definition, concave, and
equivalent to M♮-concavity (see Murota and Shioura (1999), Murota (2003) and Shioura and Tamura (2015)).

9Alternative, longer proofs of the results of the preceding two paragraphs are developed in a technical note, Bald-
win and Klemperer (2021). Baldwin and Klemperer (2016) presented a proof for the strong-substitutes case. Lin and
Tran (2017) showed how any valuation associated with a “full positive basis” can be decomposed into a combination
of simpler pieces, which gives the same decomposition as we do in the strong substitutes case, but the wider classes
of valuations which we can decompose are different. Klemperer (2010) stated the result for strong-substitutes with
multiple units of each of two goods.

10For example, neither Hatfield and Milgrom (2005)’s endowed assignment messages nor Milgrom (2009)’s (in-
teger) assignment messages can express all strong-substitute valuations, see Ostrovsky and Paes Leme (2015), and
Fichtl (2021), respectively. Furthermore, it is not possible to build up all strong-substitute valuations from weighted
matroid rank functions, either by using positive linear combinations (Balkanski and Paes Leme, 2020); or by merging
and endowing these rank functions, while restricting the ground sets of the matroids to the number of goods (Tran,
2021).
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FIGURE 1.—Illustrations of the demands of Antigone, Bathsheba and Calpurnia in Example 1. Here p1 denotes
the price per week at the seaside, and p2 is the price per week of walking.

In many auctions bidders are subject to income effects, or even hard budget constraints. For
example, bidders offering to swap bonds for alternative financial assets cannot bid to swap
more than their current holding. Since the Icelandic government asked one of us to develop a
variant of the product-mix auction for this environment, we describe an appropriate language
for this as “arctic” (see Klemperer (2018)). We note that an arctic bid can be understood as a
“word” in the standard language.

Section 6 briefly compares PMAs and their languages to related auctions and languages.
Section 7 concludes. Omitted proofs are in Appendices. A less technical exposition of the

PMA (more suitable for most users of the auction) can be found in Klemperer (2018).

2. THE SUBSTITUTES PRODUCT-MIX AUCTION LANGUAGE

The substitutes product-mix auction language allows each bidder to express (concave quasi-
linear) substitutes preferences over arbitrary quantities of differentiated goods.

Our bidders can be buyers or sellers, or traders who may be on either or both sides of the
market depending on prices. However, for simplicity, we will assume they are buyers through-
out the paper except where stated otherwise. We introduce the language using Example 1 which
describes the valuations of three potential buyers for two kinds of holiday. Figure 1 represents
these buyers’ preferences by showing their demands as functions of the prices of goods 1 (the
seaside) and 2 (walking).

EXAMPLE 1: Antigone has up to two weeks’ vacation time available, and is willing to pay
up to £800 per week to be at the seaside, or £600 per week for a walking holiday.

Bathsheba would pay up to £1,000 for a week at the seaside; she would also spend up to
£1,400 for two weeks of walking. (She is alternatively willing to pay £700 for one week of
walking, but isn’t interested in more than one week at the seaside or in having both kinds of
holiday.)

Calpurnia values a week at the seaside at £1,200, and a week’s walking at £900. She doesn’t
want to spend more than one week on either holiday, but is interested in taking both—she
values taking both at £1,700. So if she was already taking the walking holiday, she would pay
up to an additional £800 (=£1,700-£900) to also take the seaside holiday; if she was anyway
taking the seaside holiday, she would pay up to an additional £500 (=£1,700-£1,200) to also
take the walking holiday.

We will see that, for example, Antigone can precisely describe her preferences using a single
PMA bid that (i) states that she is indifferent among the three options of buying 1 unit of good
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1, or 1 unit of good 2, or no purchase, at prices (800,600), (ii) has “tradeoff” (1,1) between the
goods (if she switched between the two kinds of holiday, she would still take the same amount
of vacation time), and (iii) has “multiplicity” 2 (since she is interested either 1 or 2 weeks’
vacation). Bathsheba can also precisely describe her preferences using a single bid (but has
tradeoff (1,2)), while buyers with more complex preferences, such as Calpurnia, can describe
them with a set of bids of this kind.

2.1. Preliminaries

Our results apply to both indivisible and divisible goods. Because the divisible case follows
from the indivisible one (see Section 2.4), we will mostly discuss the latter, providing the
corresponding results where required.

There are n+ 1 goods [n]0 := {0,1, . . . , n}, in which the true goods are [n] := {1, . . . , n},
and 0 corresponds to a notional null good. Receiving a quantity of the null good, 0, corresponds
to receiving nothing. Our vectors are indexed by [n]0. We write ei for the coordinate vectors
for i ∈ [n] and notate e0 := 0.11

Prices p are arbitrary for the true goods, and we set p0 = 0, so the set of all possible prices
is P := {p ∈R[n]0 | p0 = 0}. Similarly, bundles x of goods are n+1-dimensional real vectors,
and we fix x0 = 0. Although the 0th entries are formally important, we write examples of
prices and bundles as n-dimensional vectors for easier readability (because p0 = 0 and x0 = 0
are fixed and payoff-irrelevant), and describe the case of n true goods as the n-good case.

A valuation v maps a set X of bundles to real values. It gives rise to quasi-linear demand
Dv(p) := argmaxx∈X(v(x) − p · x), defined for any price p ∈ P . We focus on the setting
with indivisible goods in which the domain X of the valuation is finite and consists of integer
bundles, so it is a subset of X := {x ∈ Z[n]0 | x0 = 0}. For divisible goods, the domain is the set
of all convex combinations of bundles in some such X and the valuation is continuous. Most
of the valuations we consider are concave.12

A valuation v is substitutes if {x}=Dv(p) and {x′}=Dv(p+λei) implies xj ≤ x′
j when-

ever λ > 0, p ∈ P and i, j ∈ [n] with j ̸= i. A valuation for indivisible goods is strong substi-
tutes if it is substitutes when we consider every unit of every good to be a separate good (see
Milgrom and Strulovici (2009)). Strong substitutes guarantee existence of competitive equilib-
rium for indivisible goods, and we will see in Section 3.1 that they correspond to “one-to-one
tradeoffs”.13 So Antigone, Bathsheba and Calpurnia all express substitutes preferences, but only
Antigone and Calpurnia express strong-substitutes preferences.

11Note that e0 is not the 0-th coordinate vector; this allows us to more conveniently notate bundles.
12A valuation for indivisible goods is concave (also known as concave-extensible) if it can be extended to a

concave function. (That is, there exists a concave function v̂ : conv(X) → R such that v̂(x) = v(x) for all
x ∈ conv(X)∩X .) It is a standard consequence of the supporting hyperplane theorem that a valuation v is con-
cave if and only if Dv(p) =X ∩ convDv(p) at any p ∈ P .

13We use the same definition of substitutes for divisible and indivisible goods; it is clear that a valuation for
indivisible goods is substitutes if and only if its concave extension is. When goods are indivisible, this definition is
the most permissive extension of the standard definition of divisible gross substitutes to the indivisible case, and so
these “substitutes” are the largest class of “substitutes” valuations for indivisible goods identified in the literature (see
Shioura and Tamura (2015) for a survey). Baldwin and Klemperer (2019b) call this definition “ordinary substitutes”; it
is strictly weaker than Milgrom and Strulovici (2009)’s “weak substitutes”, but the definitions coincide when there is
only one unit of each good available, so our definition of “strong substitutes” is equivalent to Milgrom and Strulovici
(2009)’s (see Danilov et al. (2003) and Shioura and Tamura (2015)). In the divisible case, the definitions based on
“ordinary” and “weak” substitutes identify the same set of valuations.
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2.2. The Substitutes PMA Language

A bidder in a substitutes PMA submits a set of bids that will depict a substitutes valuation
(see Sections 3 and 4).

Each bid is a triple (r; t;m) consisting of a root vector r whose coordinates are the values
the bid places on the goods; a tradeoff vector t describing the tradeoffs between the goods; and
a multiplicity m ∈ Z scaling up how many units are demanded. We call a bid positive if m> 0
and negative if m< 0.

The root’s entries (indexed by [n]0) are drawn from R together with −∞. The 0th entry
allows us to conveniently notate the case in which a bid regards an allocation of nothing (that
is, of only the null good) unacceptable at any prices: in that case r0 =−∞. Otherwise we set
r0 = 0, indicating a zero value for an allocation of nothing. We also allow for the possibility
that some true goods are completely unacceptable, that is, have value “−∞”, and we say that
I := {i ∈ [n]0 | ri > −∞} is the set of goods in which the bid is interested. We say a bid is
regular if it is interested in all the goods including the null good, so I = [n]0. So a regular bid
has a zero value for 0 and values every good above −∞. We expect buyers to only need to
use regular bids in any standard auction for substitutes (see Corollary 3.3 and the discussion
following it). However, other bids can be useful (see, especially, Section 2.3).

The set T of tradeoff vectors is also indexed by [n]0, but we always set t0 = 1. We also
require that the vector t−0 = (t1, . . . , tn) is a non-negative primitive integer vector (the greatest
common divisor of its entries is 1). So the set T consists of the vectors in Z[n]0

≥0 satisfying
these properties. We set ti = 0 for any true goods in which the bid is not interested (i.e., for
i ∈ [n] \ I).

We now define the demand correspondence Db of a positive bid b= (r; t;m) (i.e., a bid with
m> 0). For any price p, first define the bid’s utility from mti units of a good i as mti(ri − pi)
for goods which it is interested in and −∞ otherwise. At generic prices p, the demand Db(p)
of a positive bid is the unique bundle containing mti units of (only) the good i maximising its
utility. (The bid demands only the zero bundle, 0, if the null good, 0, uniquely yields the greatest
utility.) At non-generic prices p at which no bundle uniquely maximises utility, Db(p) is the
set of all the integer bundles that are convex combinations of the utility-maximising bundles.

In particular, if pi = ri for all goods in which the bid is interested (all i ∈ I), the bid is
indifferent among all the bundles of mti items of any good i in which the bid is interested,
including being indifferent about receiving nothing if 0 ∈ I (and the bid is also indifferent
about receiving any integer bundle which is a convex combination of these bundles).

The demand Db of a negative bid (r; t;m) is the negative of the demand of bid (r; t; |m|).
That is, if such a bid is part of a set of bids, then the demand Db(p) of the bid (r; t; |m|) will
be subtracted from the demand of the remainder of the set.14

So Db(p) =X ∩ conv{mtie
i | i ∈ J} where J = argmaxi∈I ti(ri − pi). We interpret Db in

terms of the demand of valuations, in Lemma 2.1 below.
Examples of the different possible types of bids for the two-good case, and their demands,

Db(p), are illustrated in Figure 2. (The demand of an unconditional bid interested in only one
good is constant, so not shown.)

In examples, we will often find it clearer to write bids in the format (r−0, t−0,m); as t0 = 1
always, this only loses the specification of r0, which is always implicitly 0 when we use this
shorthand. Doing this only excludes bids for which an allocation of 0 is unacceptable. (All
regular bids have r0 = 0.)

14Note that demanding negative units is not the same as selling, since the negative units are only demanded at
prices that are low enough, whereas a seller would only wish to sell at prices that are high enough. So a negative bid
should be understood as a “cancellation” bid, not as an offer to sell.
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FIGURE 2.—Demands of different possible types of bids for n = 2. (a) a regular bid (i.e., interested in all the
goods, {0,1,2}) with root r = (0, r1, r2), tradeoffs t= (1, t1, t2), and multiplicity m; (b) a bid interested in goods
{0,1}, with root r = (0, r1,−∞), tradeoffs t= (1,1,0) and multiplicity m; (c) a bid interested in goods {0,2},
with root r = (0,−∞, r2), tradeoffs t= (1,0,1) and multiplicity m; (d) a bid interested in the “true” goods {1,2}
but not in the null good, with root r = (−∞,0, r2), tradeoffs t= (1, t1, t2), and multiplicity m; (not shown) demand
is constant if a bid is an unconditional bid only interested in one good. The demand in each region of price space is
shown in the corresponding region. Demand on a boundary of a region is the set of integer bundles that are convex
combinations of the bundles demanded in the adjacent regions. (The slopes of the diagonal lines are t1/t2, and the
circled numbers are “weights”, as explained in Section 3.1 below.)

In Example 1 (see also Figure 1), Antigone and Bathsheba can express their demands with a
single bid each, namely (r−0; t−0;m) = (800,600; 1,1; 2) for Antigone, and (1000,700; 1,2; 1)
for Bathsheba. We will explain below that Calpurnia can express her demand by making
three positive bids (1200,900; 1,1; 1), (800,−∞; 1,0; 1), (−∞,500; 0,1; 1), and one nega-
tive bid (800,500; 1,1;−1).15 In particular Antigone and Calpurnia have one-to-one tradeoffs,
but Bathsheba does not.

A bid’s demand is associated with a valuation as follows.

LEMMA 2.1: If bid b = (r; t;m) is positive (i.e., m > 0), then Db = Dvb , where the val-
uation vb : X ∩ conv{mtie

i | i ∈ I} → R is defined by vb(x) =
∑

i∈I rixi and I is the set
of goods in which b is interested. If b is negative (i.e., m < 0), then Db = −D|b| in which
|b|= (r; t; |m|).

So positive bids represent simple valuations. Indeed, if the bid has tradeoffs t= 1 and mul-
tiplicity 1, then it represents unit demand over goods I with values r (cf. Gul and Stacchetti
(1999)). More generally, the demand of a positive bid with tradeoffs t= 1 is strong-substitutes
(see the end of Section 3.1), so we call any bid with t= 1 a strong-substitutes bid. Negative bids
do not represent valuations, but rather the subtraction of the demand of an associated valuation.

We now address the uniqueness of a bid associated with a demand correspondence.

LEMMA 2.2: For bids b = (r; t;m) and b′ = (r′; t′,m′), we have Db =Db′ if and only if
t = t′, m =m′, they are interested in the same set of goods, I , and ti(ri − r′i) = tj(rj − r′j)
for all i, j ∈ I . In particular, if 0 ∈ I , then Db =Db′ if and only if b= b′.

That is, bids with value 0 for receiving nothing are uniquely identified by their demand
correspondence, but bids for which receiving the null good is unacceptable can define the same

15We will show in Section 3.2 that in any practical auction a buyer can express her demand at all relevant prices
using only regular bids. For example, if the auctioneer’s reserve prices are (strictly) positive, Calpurnia can substitute
her second and third positive bids by (800,0; 1,0; 1) and (0,500; 0,1; 1).
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FIGURE 3.—The demand expressed by: (a) Calpurnia’s three positive bids; (b) Calpurnia’s single negative bid; and
(c) all Calpurnia’s bids, B; in Example 1. The dashed lines in (c) show where demand changes in (a), but no longer
changes after incorporating the negative bid shown in (b). For example, bundle (1,1) is the only bundle demanded in
(c) in the quadrant of prices below (800,500) because both (2,1)+(−1,0) = (1,1) and (1,2)+(0,−1) = (1,1).

demand even if their roots are distinct. For example, the demand shown in Figure 2d is defined
by any bid with root r = (−∞, r, r′) such that (r, r′) lies on the line shown in Figure 2d with
the tradeoffs t−0 = (t1, t2), and multiplicity m.

So we normalise bid (r; t;m) interested in goods I by replacing r with the unique root r′

that satisfies ti(ri − r′i) = tj(rj − r′j) for all i, j ∈ I and r′i = 0 for the smallest good i ∈ I .
Then, after normalisation, any two distinct bids have distinct demand.

We can now see that Figure 2 illustrates all the possible bids in the two-good case, with the
exception of bids that unconditionally demand only a single (true) good.

Each bidder gives the auctioneer a finite set, B, of bids. Since demand Db(p) is single-
valued at a dense set of prices in Rn for each bid b, we can define the demand DB of a bid
set B as follows. For any p ∈ Rn, let Q(p) be the set of all price vectors q in a small local
neighbourhood of p at which every bid demands a unique bundle. Then:

DB(p) :=X ∩ conv

{∑
b∈B

Db(q) | q ∈Q(p)

}
. (2.1)

If B is an empty set, we define DB(p) to be {0} at all prices. Note that Equation (2.1) implies
that any valuation v satisfying Dv =DB is concave (see note 12).

A bid set is parsimonious if its bids are normalised and it contains at most one bid for any
combination (r, t) of root and tradeoffs and no bids with multiplicity 0. Note that adding or
removing bids with multiplicity 0, or substituting multiple bids with the same root and tradeoffs
by a single bid with the sum of their multiplicities, does not change demand.16

DEFINITION 2.3: A bid collection B is a parsimonious set of bids. A bid collection is strong-
substitutes if it contains only strong-substitutes bids. It is regular if it contains only regular bids.

Figure 3 illustrates that Calpurnia’s bid collection corresponds to her demand (see also Fig-
ure 1).

16Baldwin et al. (2023a) used the alternative convention that bids could only have multiplicity ±1, and a bid
set was parsimonious if there were no coincident bids with opposite signs. It is straightforward that a normalised
parsimonious bid set under one convention corresponds to a unique normalised parsimonious bid set under the other.
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2.3. Sellers and Traders

Because a supply of x units is a demand of −x units, our language straightforwardly ex-
presses preferences of sellers, and of traders.

Unconditionally selling m units of good i is represented by a bid only interested in good i,
with multiplicity −m.17 Typically sellers in fact have a reservation price. And selling a good i
if its price exceeds r̃ is equivalent to selling it unconditionally and buying it back if (but only
if) its price is less than or equal to r̃. Such “buyback bids” permit rich seller preferences across
goods; see Section 5.2.

A trader, such as one described in Hatfield et al. (2013), who wishes, for example, to buy
an apple (good 1) and sell an apple tart (good 2) if and only if the profit exceeds r̃ (i.e., iff
p2 − p1 ≥ r̃) can do so by making one bid that sells an apple tart for sure, and a second bid that
buys either an apple or an apple tart according as to whether or not p2 − p1 ≥ r̃ (this latter bid
is the bid shown in Figure 2d above, with r2 = r̃ and m= t1 = t2 = 1).

So it is easy to use the PMA language to run a “product-mix market” for multiple agents who
participate on either or both sides of the market.18

2.4. The Case of Divisible Goods

It is straightforward that we can approximate any divisible goods auction arbitrarily closely
by an indivisible goods auction, by simply re-scaling quantities to arbitrarily tiny units. But our
language can also be used to express demand for divisible goods directly: the demand of a bid
collection B of PMA substitutes bids for divisible goods at prices p is then defined as D̂B(p) :=
convDB(p).19 In this divisible setting, we also allow bids to have rational multiplicities and
tradeoffs. This is mathematically equivalent to integer multiplicities and tradeoffs, since we can
re-scale quantities of goods appropriately.20

PROPOSITION 2.4: Suppose valuation v̂ for divisible goods is the concave envelope of con-
cave valuation v for indivisible goods. A bid collection B satisfies D̂B = Dv̂ if and only if
DB =Dv .

Proposition 2.4 allows us to handle all concave substitutes valuations, v̂, for divisible goods
that are piecewise-linear with rational vertices (because v̂ is the concave extension of an
indivisible-goods valuation v after re-scaling quantities). Since any concave substitutes val-
uation for divisible goods can be approximated arbitrarily well with such piecewise functions,
Proposition 2.4 seems unlikely to imply any restriction on a PMA in practice.21

So all our results on the expressivity of our language for indivisible goods can equivalently
be expressed for appropriate valuations on divisible goods.

17Note that a negative bid interested in more than one good cannot be understood as a sale, since it selects good(s)
with a low price relative to the root (whereas a seller prefers to sell high price good(s)). So such a bid only makes
sense in combination with positive bid(s) which it will cancel at appropriate prices.

18Indeed one of us (Lock) recently worked with Bellus Ventures to implement a substitutes PMA as a platform
for developers of renewable energy projects to sell tax credits, and hence allocate subsidies for clean energy more
efficiently; software for this application is at http://pma.nuff.ox.ac.uk/.

19This, of course, also holds for the demand of an individual bid. While in the indivisible case we defined Db(p) =

X ∩ conv{mtiei | i ∈ J}, in the divisible case the demand is just D̂b(p) := conv{mtiei | i ∈ J}, where J =
argmaxi∈I ti(ri − pi) and I is the set of goods.

20We can, if desired, achieve a unique normalisation by scaling tradeoffs and multiplicities so that the tradeoff is a
primitive integer vector.

21Moreover, after appropriately re-scaling quantities, Proposition 2.4 tells us that the unique bid collection B
expressing the same demand as v̂ is the unique bid collection satisfying DB =Dv for indivisible goods.

http://pma.nuff.ox.ac.uk/
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3. OUR REPRESENTATION THEOREM

We now state the main results of this paper: any concave substitutes valuation can be ex-
pressed in the substitutes PMA language, and any strong-substitutes valuation can be expressed
in the substitutes PMA language using strong-substitutes bids. Moreover, these expressions are
unique (up to normalisation and removal of redundancies as incorporated in the definition of
bid collections). We state our results for indivisible goods, but they can be extended to the
divisible case by applying Proposition 2.4.

THEOREM 3.1: For any substitutes concave valuation v, there exists a unique bid collection
B such that DB =Dv .

COROLLARY 3.2: For any strong-substitutes valuation v, there exists a unique bid collec-
tion B such that DB =Dv , and all bids in B are strong-substitutes bids.

Conversely, we will see in Section 4 that if we have a strong-substitutes bid collection whose
demand is that of a valuation, then that valuation must be strong substitutes. So it is natural
to call the restriction of the substitutes PMA language to strong-substitutes bids the “strong-
substitutes product-mix auction language”. We outline the proofs of Theorem 3.1 and Corol-
lary 3.2 in Section 3.3 and give the full proofs in Appendix G.

Finally, in any auction in which sufficiently low bids are always rejected, a bidder can express
her demand precisely at all relevant prices using only regular bids (those that are interested in
all goods, as illustrated in Figure 2a for the two-good case), assuming she is not prepared to
pay an arbitrarily large price.

COROLLARY 3.3: For any substitutes concave valuation v, there exists a regular bid col-
lection B for any p ∈ P , such that DB(p) =Dv(p) for all p ≥ p, if there exists p such that
Dv(p) = {0} for all p≥ p.

For example, if the auctioneer’s reserve prices are (strictly) positive, then, as we noted in
Section 2.2 above, substituting the regular bids (800,0; 1,0; 1) and (0,500; 0,1; 1) for the bids
(800,−∞; 1,0; 1), (−∞,500; 0,1; 1) in the bid collection that expresses Calpurnia’s true de-
mand will change her demand only at (sufficiently) negative prices which will never arise.

3.1. The Geometry of Demand

The proofs of our main results rest on a geometric characterisation of indivisible demand
introduced in Baldwin and Klemperer (2019b). We outline the key ideas here; for precise state-
ments and further details we refer to Appendix C.

When goods are indivisible, demand is unique at generic prices and can only change by
passing through a price at which there is indifference between two or more bundles. So, for
any demand correspondence D arising from a valuation v, or an individual bid b, or a bid
collection B, we define the Locus of Indifference Prices (LIP) L := {p ∈ P | |D(p)| ≥ 2}. We
call the connected components of the complement of L the unique demand regions (UDRs)
of L; demand is constant within a UDR.

LIPs of valuations and bid collections can be decomposed into (n− 1)-dimensional linear
pieces which we call facets. Baldwin and Klemperer (2019b) show this for valuations, and by
Lemma 2.1 it also holds for the LIP of a single bid; the LIP of a bid collection then also inherits
this structure from the LIPs of its individual bids. In each panel of Figure 1, the line segments
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FIGURE 4.—The UDRs and weighted LIPs associated with Antigone, Bathsheba and Calpurnia in Example 1.
Antigone and Bathsheba both have three UDRs, while Calpurnia has four. The bundles demanded are shown in their
corresponding UDRs. The facet weights are circled, and arrows show the normal vectors for the facets of Antigone
and Bathsheba’s LIPs defined by a fixed rotational direction about the point at which the three facets meet.

are the facets, and the union of the line segments form the LIP. Antigone and Batsheba have
three UDRs, while Calpurnia has four.

We extend a LIP to a weighted LIP (L,w) by associating each facet F of L with a
weight w(F ). For valuations v, weight wv(F ) is the (positive) greatest common divisor of
the coordinate entries of x− y, where x and y are the bundles demanded in the UDRs on ei-
ther side of F . The change in demand as we cross a facet F of Lv is then specified by wv(F )n,
where n is the normal to F expressed as a primitive integer vector and pointing in the oppo-
site direction to the price change. Figure 4 illustrates this for Example 1; the figure shows the
bundles in the UDRs, the facet weights, and the facet normals. For individual bids b, we define
wb = wvb if m> 0 and wb =−wv|b| if m< 0. It follows from Lemma 2.1 that the change in
demand is similarly expressed by the facet normals and weights. This demand change property
also extends to the weighted LIPs of bid collections B if we define the weight wB(F ) of each
facet F in LB as the sum, over all bids b ∈ B, of the weights wb(F

′) of all facets F ′ in Lb

containing F .
The fact that demand change is governed by the facet weights and normals for all our

weighted LIPs allows us to establish the following relation between concave valuations and
bid collections. This plays a key role in our proofs of Theorem 3.1 and Proposition 4.3.

PROPOSITION 3.4: Concave valuation v and bid collection B satisfy (Lv,wv) = (LB,wB)
and Dv(p̃) =DB(p̃) for some specific price p̃ ∈ P if and only if Dv =DB.

Moreover, the net change in demand along a price path that ends where it started must be
zero. So the weighted LIPs of valuations and bid collections both satisfy the following impor-
tant ‘balancing condition’.

FACT 3.5—The “Balancing Condition” (Mikhalkin (2004)): Let (L,w) be a weighted LIP.
For any (n− 2)-dimensional intersection G of two or more facets of L, the weights w(F k) of
the facets F 1, . . . , F l that contain G, and primitive integer normal vectors n1, . . . ,nl for these
facets defined by a fixed rotational direction about G, satisfy

∑l

k=1w(F
k)nk = 0.

Figure 4 illustrates the balancing condition for Antigone and Bathsheba, with normal vec-
tors shown as arrows. In Bathsheba’s LIP, for example, the facets meeting the LIP’s vertex at
point (1000,700) are normal to (−1,0), (1,−2) and (0,1), so the balancing condition states
1 · (−1,0) + 1 · (1,−2) + 2 · (0,1) = 0.
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It is not hard to see that for a valuation to be substitutes, every facet’s normal vector must
have at most one positive coordinate entry and at most one negative coordinate entry (with all
others being 0)—if not we would be able to engineer a price change violating the substitutes
condition. The converse is also clear. A valuation is strong-substitutes if and only if all the facet
normal vectors have coordinates in {0,±1}.22 So strong substitutes means that the tradeoffs
between units of goods across facets are one-to-one.

It is straightforward that the LIP Lb of a bid b= (r; t;m) interested in goods I consists of
one facet normal to tie

i− tje
j for each pair (i, j) of goods in I , so v|b| is substitutes. Moreover,

v|b| is strong-substitutes if t= 1.
We will refer to facets with normal aei − bej for some a, b ∈ Z>0 as (i, j)-facets. All facets

of Lb and LB are (i, j)-facets for some i, j ∈ [n]0.

3.2. Regular Valuations

Theorem 3.1 will be easiest to see for valuations which we call “regular”, which are those
which can be expressed using only regular bids (see Corollary 3.7 below). Regular valuations
are those for which the goods are “strictly substitutes” in the sense that the bidder will switch
completely towards or away from a good if its price is sufficiently extreme. That is, for every
good i, both (i) good i is not demanded if its price is high enough, and (ii) fixing the prices
of all other goods, good i is the only good demanded if its price is low enough (perhaps very
negative):

DEFINITION 3.6: A valuation v is regular if it is concave and substitutes, and if for all
i ∈ [n], both:

(i) there exists pi ∈R such that if pi > pi and x ∈Dv(p) then xi = 0,
(ii) for all p ∈ P there exists λ > 0 such that if λ > λ then xj = 0 for all x ∈Dv(p− λei)

and j ̸= i.

So Antigone and Bathsheba have regular valuations, but Calpurnia does not: if the price of
a seaside holiday is below £800 then Calpurnia always demands a week at the seaside, even if
the price of taking two weeks walking is arbitrarily negative.23

COROLLARY 3.7: For any regular valuation v, there exists a unique bid collection B such
that DB =Dv , and all bids in B are regular bids.

Corollary 3.7 follows largely from Theorem 3.1 and is proved in Appendix G.
We will use the following geometric characterisation of the LIPs of regular valuations.

22For this material, see Baldwin and Klemperer (2019b, Proposition 3.6), Baldwin and Klemperer (2014, Corollary
5.20), and Shioura and Tamura (2015, Theorem 4.1(i))). The “demand types” of Baldwin and Klemperer (2019b)
generalise these results by providing a taxonomy of valuations according to the facet normals of their LIPs. Baldwin
et al. (2020) extends the “demand types” classification of valuations to settings with income effects, and Baldwin
et al. (2021) provides further analysis (and an alternative definition) of “demand types”.

23However, as Corollary 3.3 suggests, it is trivial to find a regular valuation whose demand precisely matches
Calpurnia’s demand at all economically-relevant prices. For example, if only positive prices are economically-
relevant, we can introduce the possibility that if she accepts two weeks’ holiday of either type then she has free
disposal of the unwanted second week–but she cannot buy more than two weeks’ holiday in total. In this case, she
would prefer getting two weeks’ walking (but just using one of the weeks) to her other options, if the price of walking
were sufficiently negative, but her demand is unchanged at all positive prices.
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wl(p) wr(p)

wd(p)

wu(p)

wur(p; t1
t2
)

wdl(p; t1
t2
)

p

FIGURE 5.—A price vector p ∈ R2 can be adjacent to at most two horizontal and two vertical facets, and any
number of diagonal facets, of a LIP. The weight labels are those defined in Section 3.3.1. The arrows illustrate a
consistent fixed rotational direction for computing the balancing property.

LEMMA 3.8: Suppose Lv is the LIP of a substitutes valuation. Then it is the LIP of a regular
valuation if and only if, for all i, j ∈ [n],

(i) every (i,0)-facet of Lv is bounded below in all coordinates;
(ii) every (i, j)-facet of Lv is bounded above in coordinates i and j.

It is not hard to show that the LIP of a regular bid satisfies these properties, and therefore
that the LIP of a regular bid collection also does (see Corollary D.1).

3.3. Proving the Representation Theorem

To prove Theorem 3.1, we construct a bid collection B such that (Lv,wv) = (LB,wB) and
Dv(p̃) =DB(p̃) for some specific price p̃ ∈ P in a UDR of Lv = LB, for any given concave
substitutes valuation v. By Proposition 3.4, Dv(p) and DB(p) then agree at all prices.

The substance of the proof is therefore the construction of the bid collection such that the
weighted LIPs of v and B agree. To do this, we choose bids so that the weights of specific
facets of LB match the weights of the corresponding facets of Lv . We then show that the
balancing condition implies that the weights of all LB’s other facets also match the weights of
their corresponding facets in Lv .

We first show how to do this for the regular two-good case, and illustrate the method in the
context of a simple example, before sketching the additional arguments needed for the general
case. The full proof is in Appendix G.

Corollary 3.2 follows immediately from our proof of Theorem 3.1: if v is strong-substitutes,
then all facets of Lv represent one-to-one tradeoffs between goods, and so the bids we construct
all incorporate tradeoffs t= 1.

3.3.1. The Representation Theorem for the Regular Two-Good Case

We first show that we can represent regular valuations for two goods using only regular bids,
that is, only the bids illustrated in Figure 2a. For this case we can identify bids b = (r; t;m)
using (r−0; t−0;m).

To explain our procedure, we notate facet weights as follows (see Figure 5): For any p ∈R2,
we let wl(p) and wr(p) be the weights of the horizontal facets containing p to the left and right
of p; let wu(p) and wd(p) be the weights of the upper and lower vertical facets containing p;
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FIGURE 6.—(a) The LIP Lv of a regular valuation v. The facets are labelled with their weights, and the bundle of
goods demanded in each UDR is shown. (b) The bid collection representing v.

and let wdl(p; t1
t2
) and wur(p; t1

t2
) be the weights of the diagonal facets with slope t1

t2
below

(“down-left”) and above (“up-right”) p, where we write t1
t2

as a fraction in lowest terms. Where
a corresponding facet does not exist, we say its weight is 0. We use subscripts v, b and B for
the weights, according to which LIP we are referring to.

Consider any regular valuation, v, on two goods 1 and 2. Figure 6 shows the LIP, Lv , of an
example of such a valuation. We can create the bid collection B that expresses such a valuation
from regular bids whose roots r−0 are vertices of Lv . For every vertex p = (p1, p2), and for
every t1

t2
such that a diagonal facet with slope t1

t2
starts or ends at p, include a bid b= (r; t;m)

with r−0 = (p1, p2), tradeoff t−0 = (t1, t2), and multiplicity m = wdl
v (p, t1

t2
) − wur

v (p, t1
t2
),

except if m = 0. (An m = 0 bid would be vacuous.) So wdl
b (p, t1

t2
) − wur

b (p, t1
t2
) = m (see

Figure 2), and therefore also wdl
B (p, t1

t2
) − wur

B (p, t1
t2
) = m, since b is the only bid (if any)

which influences the change in weight at p along the diagonal with slope t1
t2

. The bids for our
example are those given on the right in Figure 6.

We can now show that (LB,wB) = (Lv,wv). First consider diagonal facets. Trace down any
(doubly-infinite) diagonal line that contains a facet in either Lv or LB. At high enough prices,
the weights of both LIPs’ facets along this line are 0; that is, neither LIP has a facet because 0

is demanded everywhere at such prices, as valuation v is regular (recall Definition 3.6 (i)). And
by construction, there is a bid in B whose tradeoff matches the slope of this line wherever the
weights of the facets in this line changes; moreover this bid is such that the weights change in
both LIPs in the same way. So the weights of the facets in (LB,wB) match those in (Lv,wv)

all along the line.
For example, in Figure 6, as we trace down the line with slope 1

2
through (7,4), we first have

no facet (above (9,5)), then two consecutive facets between (9,5) and (3,2), both with weight
1 due to bid 1, and then no facet again (below (3,2)), as bid 3 with multiplicity −1 cancels out
the facet of bid 1.

The key to our proof is that the balancing condition (Fact 3.5) implies that any regular LIP is
fully determined by its diagonal facets. (Figure 2a provides an elementary illustration.) So, be-
cause our bids’ diagonal facets were specified to match the valuation’s diagonal facets, (Lv,wv)

and (LB,wB) must match everywhere.
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In detail, for the facet weights and normals (in counterclockwise direction) of any LIP
around p, as illustrated in Figure 5, the balancing condition tells us that

wu(p)

(
−1
0

)
+wl(p)

(
0
−1

)
+

∑
t1
t2

∈S

wdl(p, t1
t2
)

(
t1
−t2

)

+ wd(p)

(
1
0

)
+wr(p)

(
0
1

)
+

∑
t1
t2

∈S

wur(p, t1
t2
)

(
−t1
t2

)
= 0,

where S is the set of all slopes of diagonal facets at p. The first coordinate of this equation tells
us wu(p)−wd(p) =

∑
t1
t2

∈S(w
dl(p; t1

t2
)−wur(p; t1

t2
))t1, for the weight functions of v and B.

So since, for every slope t1
t2

, we already know that wdl
B (p, t1

t2
) − wur

B (p, t1
t2
) = wdl

v (p, t1
t2
) −

wur
v (p, t1

t2
), it follows that wu

B(p)−wd
B(p) =wu

v (p)−wd
v(p).

Consider, for example, the three bids at (3,2) in Figure 6. As illustrated in Figure 2a, bid 3
gives a vertical facet of weight t1m=−1 above (3,2), and bid 4 gives a vertical facet of weight
t1m=−2 here. But bid 5’s vertical facet weight is t1m= 3. So these facets all cancel in LB
and so wu

B(p) =wd
B(p) = 0, giving the same 0 difference in weight here as on the LIP Lv .

So tracing up from the bottom of any vertical line containing a facet of either Lv or LB, the
weight changes are the same in both LIPs. Since (by our regularity assumption and Lemma 3.8)
neither LIP has a vertical facet at low enough prices, it follows that their weighted vertical facets
are identical.

The argument for the horizontal facets of LB and Lv is the same as for the vertical ones; the
fact that any changes in the horizontal facets’ weights match at any p, i.e., wr

B(p)−wl
B(p) =

wr
v(p)−wl

v(p), follows from the second coordinate of the balancing equation.
So (LB,wB) = (Lv,wv). And since both our bid collection and the valuation are regular,

both demand 0 at high enough prices, so DB(p) =Dv(p) at all prices by Proposition 3.4.24

As B is parsimonious and normalised by construction, it is a bid collection. We now show
that B is the unique bid collection such that DB(p) = Dv(p) at all prices: suppose that
DB′ = Dv for some bid collection B′. Then (LB,wB) = (LB′ ,wB′) by Proposition 3.4, and
so wdl

B (p, t1
t2
) − wur

B (p, t1
t2
) = wdl

B′(p,
t1
t2
) − wur

B′ (p,
t1
t2
) for all possible p and t. But we saw

above that wdl
B (p, t1

t2
)−wur

B (p, t1
t2
) = wdl

b (p, t1
t2
)−wur

b (p, t1
t2
) where b is the unique bid in B

with root r = (0, p1, p2), tradeoff t, and multiplicity given by this difference; if no such bid
exists, then this difference must be zero. So the existence and multiplicity of such bids must
match across B and B′, so B′ = B.

3.3.2. The Representation Theorem for the General Case

We begin with the case of a regular valuation, v. The LIP of a valuation for n goods poten-
tially has many more facets than that of a two-good valuation. (Figure 7 illustrates a bid in the
n = 3 case.) However, the complexity of our problem is greatly reduced by the fact that the
LIPs of substitutes valuations and bid collections only have facets that are normal to vectors

24Note that it was important to start by considering diagonal facets, because we needed to know the tradeoff of
each bid, and only the diagonal facets tell us this. (Starting by looking at horizontal or vertical facets would not have
worked: doing so would have suggested that there is no bid at (3,2), for example.) An exception is if the valuation is
strong-substitutes, in which case every bid has t−0 = (1,1), so either the horizontal facets, or the vertical ones, will
tell us all we need to know.
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FIGURE 7.—The LIP of a bid with root r−0 = (3,6,2), tradeoffs t−0 = (5,6,4) and multiplicity m= 1 divides
price-space into four 3-dimensional UDRs. Demand is (5,0,0), (0,6,0), (0,0,4), and (0,0,0), in the UDRs that
are to the left of the left vertical facet, in front of the right vertical facet, below the horizontal facet, and at higher
prices than any of these three facets, respectively. The facets’ weights are shown in the circles. Their normal vectors
are shown as arrows; they are (0,0,1), (1,0,0), and (0,−1,0), for the non-diagonal facets (with weights 4, 5, and 6,
respectively), and (−5,0,4), (−5,6,0), and (0,−6,4) for the diagonal facets (from left to right in the view shown).

with at most two non-zero entries (see Section 3.1). This, together with the balancing condi-
tion, will mean that we only need to find bids matching the facets in a single diagonal (i, j)
orientation in order to find bids that match the facets in all the other orientations.

We fix two goods i, j ∈ [n] and construct a bid collection B so that the weighted LIPs of v
and B agree on all diagonal (i, j)-facets for this particular choice of i and j. In the two-good
case, the multiplicity of a bid at p with tradeoffs (t1, t2) is the difference in weight between the
upper and lower facet along the line through p with slope t1

t2
, i.e., in direction ( 1

t1
, 1
t2
) (this is

the diagonal line in Figure 2a). In higher dimensions, the area of interest becomes a hyperplane
neighbourhood around p, which can contain many facets; the multiplicity of a bid at p with
tradeoffs t is the weighted sum of weights of the facets meeting at p that contain part of the
line through p in direction ( 1

t1
, . . . , 1

tn
). (In Figure 7, this is the diagonal line along which all

three diagonal facets meet.)
In the n = 2 case, we picked a specific diagonal line and moved along it to show that the

weighted LIPs of v and B agree on all the facets of the line. In our more general setting, we now
pick a specific (i, j)-hyperplane and sweep across it, visiting vertices in an appropriate order,
to show that the weighted LIPs of v and B are identical on all (i, j)-facets in this hyperplane,
and hence all hyperplanes for our fixed i, j.

We then use the balancing condition to show that we would have got the same bid collection
if we had started with a different diagonal orientation than (i, j). So the weighted LIPs of v
and B have the same weighted facets for all diagonal orientations. Moreover, the balancing
condition also tells us that the (i,0)-facets of both weighted LIPs match for all i ∈ [n].

When valuations are not regular, we start in exactly the same way by creating regular bids at
each vertex of Lv . However, in this case, the construction fails to account for the fact that Lv

has diagonal (i, j)-facets which are unbounded above in coordinates i and j and/or (i,0)-facets
which are unbounded below (cf. Lemma 3.8). Because the facets of regular bids are bounded
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in these ways, they cannot depict such facets. For example, a valuation that is interested only
in good i and the null good has a LIP consisting of a single (unbounded) (i,0)-hyperplane (as
illustrated in Figure 2b or 2c for the two-good case) but has no vertex, so we have thus far have
generated no bid(s) to match it.

We therefore need to add some non-regular bids to our construction. To identify these, we
draw a “bounding box” which is a hyperrectangle large enough that its interior contains at least
part of the interior of every facet of Lv . The (i,0)-facets which are unbounded below, and (i, j)-
facets which are unbounded above in coordinates i and j, must intersect the boundary of this
box. So at every vertex at which Lv and the bounding box intersect, we add non-regular bids
so that the weighted LIPs also agree on all the unbounded facets. (In the two-good case, these
are bids of the kind illustrated in Figure 2b for (1,0)-facets, Figure 2c for (2,0)-facets, and
Figure 2d for (1,2)-facets.) Appendix A.1 gives a detailed example of adding non-regular bids.

The weights of the LIPs of the valuation and the bid collection now match everywhere. It
remains to adjust demand globally to the correct levels. To do this, we fix any price in a unique
demand region of Lv . Then, for each good i, add a bid interested only in i, with multiplicity
equal the number of units of i demanded by v, minus the number of units of i demanded by
our current bid collection, at that price.

The final steps of the proof are as for the regular two-good case. Appendix A.2 provides a
more detailed sketch of the proof of the general case; the full details are in Appendix G.

4. VALUATIONS FROM BIDS

Theorem 3.1 showed that any substitutes valuation corresponds to a collection of bids. Con-
versely, we call a collection B valid if there is a valuation v with Dv =DB. We will see that all
bid collections of positive bids are valid, but not all bid collections that include negative bids
are valid. (Calpurnia’s bid collection includes negative bids and is valid.) We develop multiple
characterisations of validity in Proposition 4.3.

We now show that the class of valid bid collections in the substitutes PMA bidding language
corresponds exactly to the class of concave substitutes valuations, and analogous equivalences
hold for strong-substitutes and regular valuations.

Note that adding a constant to the valuation v (including to the value of the zero bundle,
v(0), if 0 is in v’s domain) does not change its demand, Dv . Conversely, any two valuations
have identical demands only if their normalisations are the same (Mikhalkin 2004, Proposition
2.1). So we normalise valuations by fixing the value of any consistently chosen bundle from
their domains. We already fixed a normalisation of bids, but we could have made any other
choice consistent with Lemma 2.2. Now:

COROLLARY 4.1: Fix any normalisations for valuations and bids.
(i) Valid bid collections B correspond one-to-one to concave substitutes valuations v, such

that DB =Dv .
(ii) Valid strong-substitutes bid collections B correspond one-to-one to strong-substitutes val-

uations v, such that DB =Dv .
(iii) Valid regular bid collections B correspond one-to-one to regular valuations v, such that

DB =Dv .

In each case, given a valuation, we obtain a bid collection satisfying the specified proper-
ties and unique up to normalisation, by Theorem 3.1 and Corollaries 3.2 and 3.7, respectively.
Conversely, validity of a bid collection means that it defines a valuation, and this is concave
(as we noted below Equation (2.1)) and unique up to normalisation (see the previous para-
graph). Seeing that this valuation has the specified properties is easy using the geometric tools
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of Section 3.1. For (i), every valid bid collection B is associated with the valuation v satisfying
DB =Dv by definition, so LB = Lv . The facets of each bid’s LIP are (i, j)-facets, so the same
holds for LB, implying that v is substitutes. For (ii), we add that if B is a strong-substitutes bid
collection, then the normals of each bid’s LIP facets are normal to ei − ej for some i, j ∈ [n]0,
so the same holds for LB = Lv and v is strong-substitutes. For (iii), if B is a regular bid collec-
tion, its LIP satisfies the properties of Lemma 3.8 (see discussion directly below that lemma),
so v is regular by Lemma 3.8. This proves Corollary 4.1.

4.1. Explicit Valuations

We can specify the valuation vB of a valid bid collection B as follows. For any bundle x that
is uniquely demanded by B at some prices, pick any such specific price p at which each bid
b= (rb, tb,mb) ∈ B uniquely demands some good ib and define

vB(x) :=
∑
b∈B

mbtbibr
b
ib .

We can extend this definition to a (concave) valuation on the set of all bundles demanded by B
(at any price): if x is (non-uniquely) demanded by B, fix prices p at which x is demanded and
perturb them generically and infinitesimally to get any prices p′ at which every bid’s demand
is unique. The bundle x′ that B demands at p′ is also demanded at p, and we define vB(x) :=
vB(x

′) + p · (x− x′). The fact that vB is well-defined and satisfies DB =DvB is part (iii) of
Proposition 4.3.

Alternatively, Lemma F.3 and Proposition F.6 show that we can write vB in terms of the
valuation functions vb associated with each bid b ∈ B in Lemma 2.1.

4.2. Other Characterisations of Validity

Proposition 4.3 shows that B is valid if and only if DB = DvB for the valuation vB from
Section 4.1. It also gathers further equivalent characterisations of validity of bid collections.

In standard economic contexts, without Giffen goods, a “law of demand” holds; that is, an in-
crease in price for any one good will (weakly) reduce demand for that good (see Definition 4.2).
In particular, this holds for the demand correspondence of any valuation. So if DB =Dv holds
for some valuation v, then DB also satisfies the law of demand. We show in Proposition 4.3
that this is in fact the only condition B needs to satisfy: B is valid if and only if DB satisfies the
law of demand.

DEFINITION 4.2: A demand D satisfies the law of demand if, for any two prices p and
p′ := p + λei with λ ≥ 0 and i ∈ [n] that satisfy D(p) = {x} and D(p′) = {x′}, we have
x′
i ≤ xi and equality holds if and only if x= x′.

Note that it follows that not all bid collections that include negative bids are valid. For ex-
ample, a single negative bid on its own violates the law of demand—see any panel of Figure 2
with m< 0—so corresponds to no valuation. However, all positive bid collections are valid, as
will become clear shortly.

We can also characterise validity using the indirect utility functions of v and B defined,
respectively, by πv(p) :=maxx∈X(v(x)− p ·x) and

πB(p) :=
∑

(r;t;m)∈B

m max
i∈[n]0

ti(ri − pi). (4.1)
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We show that B is valid if and only if πvB = πB. Indeed, we need only impose a weaker
condition on πB. We show that B is valid if and only if πB is convex—a property necessarily
satisfied by the indirect utility function of any valuation.

We also show that the demand of a valid bid collection B is the Minkowski difference be-
tween the demand of B’s positive bids, B+, and the demand of B’s negative bids with the
absolute value taken for their multiplicities, |B−|. The converse also holds, which provides an
additional characterisation of validity. (The Minkowski difference X−Y of two sets X,Y ⊆P
is defined as {p ∈ P | p+ Y ⊆X}.)

Finally, we show that B is valid if and only if every facet of its weighted LIP (LB,wB) has a
positive weight.

PROPOSITION 4.3: For any bid collection B, the following statements are equivalent.
(i) Bid collection B is valid, i.e., there exists a valuation v such that Dv =DB.

(ii) There exists a concave substitutes valuation v such that Dv =DB.
(iii) The valuation vB is well-defined and satisfies DvB =DB.
(iv) DB satisfies the law of demand.
(v) The valuation vB satisfies πvB = πB.

(vi) The indirect utility function πB of B is convex.
(vii) For all p ∈ P , we have DB(p) =DB+(p)−D|B−|(p).

(viii) The weight wB(F ) of every facet of LB is positive.

(Statements (v) and (vi) are generalisations of Baldwin et al. 2023a, Theorem 1 and (vii)
generalises a result in Baldwin et al. 2024, all originally just in the strong substitutes case.)

It is now immediate that any positive bid collection B is valid: (vii) trivially holds when
B = B+. (An easy alternative argument is that the weight wB(F ) of any facet F of LB equals
the sum of the weights of the facets of the bids in LB that contain F (Section 3.1). Since any
positive bid’s facets’ weights are all positive (see Section 3.1), wB(F ) is also positive, so B is
valid by (viii) of Proposition 4.3.)

5. IMPLEMENTING PRODUCT-MIX AUCTIONS

5.1. Constructing Bid Collections

A bidder who knows the weighted LIP of her valuation can find the unique bid collection
representing her valuation by applying the constructive procedure that underpins the proof
of Theorem 3.1 (see Algorithm 1 in Appendix G). And the mathematical software tool Gfan
(Jensen, 2024) can find the weighted LIP if the bidder knows her valuation function.

In practice a bidder may find it hard to articulate her entire valuation function. However,
PMA languages allow bidders to construct complex valuations by combining smaller struc-
tures. This can be especially helpful for, for example, an organisation such as a commercial
bank whose demand in the Bank of England’s PMA for loans (see Section 5.4) may be the
combination of the demands of several separate divisions. Moreover, even a simpler bid struc-
ture (such as the demand of a single division) can be pieced together, bit by bit, from the
answers to straightforward questions.

For example, a bidder might know that she wants up to two units in total of two goods on
offer. So she knows the configuration of her bids is of the form shown in Figure 8, with three
positive bids, A,B, and C , and one negative bid, D. So she could proceed by identifying the
four separate price vectors at each of which she is indifferent between three alternative bundles.
But she could instead ask: if p2 were high enough that I would never buy good 2, what is the
maximum price, p′1, that I would pay for a single unit of good 1, and what maximum per-unit



20

˜̃p1
p′′
1 p̃1 p′

1

p′′
2

p′
2

(0,0)(1,0)(2,0)

(0,1)

(0,2)
(1,1)

DB

C

A

p1

p2

FIGURE 8.—Example of strong-substitutes preferences expressed by three positive and one negative bid. The roots
of the positive bids A,B and C are drawn solid, and the root of the negative bid D is hollow.

price, p′′1 , would I pay for two units of good 1? (thus identifying the first coordinates of bids
A and B). Also, if p1 were very high, what maximum per-unit prices, p′2, and p′′2 , would I pay
for one unit, and two units, of good 2, respectively? (thus identifying the second coordinates of
bids A and C). And finally, if both goods’ prices were low, at what relative prices p1 − p2 = p̃1
would I switch from demanding (0,2) to (1,1)?, and at what p1− p2 = ˜̃p1 would I switch from
demanding (1,1) to (2,0)? (thus pinning down the remaining coordinates of the bids25). This
elicits the required information in a way that may be much easier for the bidder.

Quite generally, it suffices for a bidder to be able to answer simple questions of the type
“At the following prices, what bundle of goods do you demand?”. For this “demand oracle”
case, Goldberg et al. (2022) present algorithms to generate strong-substitutes bid collections by
making a series of demand queries. Moreover, Baldwin et al. (2023a, Appendix C2) presents a
simple algorithm to test for validity of a strong-substitutes bid collection.26 We expect that The-
orem 3.1 and Proposition 4.3 can be used to extend these algorithms to substitutes preferences
more generally.

5.2. Expressing The Auctioneer’s Preferences

An important feature of the PMA is that it allows the auctioneer to choose how the quantities
sold depend upon expressed demand. The auctioneer can express her preferences in the same
way as any other bidder who is a seller (see Section 2.3).

We can write S(p) for the auctioneer’s supply, and choose a vector s such that si is the
maximum number of units of good i that the auctioneer would sell at any price p (i.e.,
si =maxp Si(p)). Then offering supply S(p) is equivalent to always selling a fixed supply s,
but buying back the demand of a bidder whose demand is D(p) := −S(p) + s. In the next
subsections we will think of the auctioneer in just this way, as offering a fixed supply bun-
dle, s, and also acting as an additional bidder who buys back goods to ensure that the “correct
quantity” is sold to the remaining bidders at any price vector.27

25See Figure 8: writing rJi for the ith coordinate of bid J , we have rA1 = p′
1, rB1 = p′′

1 , rA2 = p′
2, rC2 = p′′

2 ,
rC1 − rC2 = p̃1, and rB1 − rB2 = ˜̃p1, which allows us to solve for rC1 (= rD1 ) and rB2 (= rD2 ). In non-generic cases
D can coincide with one of A, B and C , in which case there are just two positive bids, and no negative bid.

26Given a fixed number of negative bids, the algorithm tests for validity in time polynomial in the total number of
bids and goods. An implementation of this algorithm is at http://pma.nuff.ox.ac.uk.

27 For example, an auctioneer who wishes to sell Q units in total of two goods, and to sell good 2 if and only if
p2 ≥ p1 + r̃, can do this by choosing s1 = s2 =Q and also making the bid illustrated in Figure 2d (with r2 = r̃,

http://pma.nuff.ox.ac.uk
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An auctioneer may also wish to set a reserve price for each good. This is usually most easily
implemented via restrictions on bids and clearing prices, but can alternatively be achieved by
making appropriate buyback bids.

5.3. Determining the auction allocation and price vector

The auction’s allocations are chosen to be consistent with competitive equilibrium, given
the supplies and demands expressed by the bids, where possible. (If the auctioneer’s objective
is profit maximisation, it can achieve this by choosing a supply that does not reflect its actual
preferences.28)

We also assume the auction’s prices are the competitive equilibrium prices, given the supplies
and demands expressed by the bids, where these exist. (“Pay-your-bid” or other pricing rules
can be used instead if preferred, though this would give even “small” bidders incentives to
deviate from truthful reporting of preferences.) If multiple price vectors support competitive
equilibrium, we prefer to choose the lowest one to minimise bidders’ incentives to distort their
preferences.29

Competitive equilibrium always exists in a substitutes PMA with divisible goods. Moreover,
a merit of the strong-substitutes PMA is that equilibrium continues to exist even when goods
are indivisible (under mild assumptions, such as those we make in the next paragraph)—see
Proposition F.2. A fortiori, competitive equilibrium also exists in simpler cases such as the Bank
of England’s PMA described below. Beyond strong-substitutes, however, it is well-known that
equilibrium may fail to exist.30 So, if there is no equilibrium for a general substitutes PMA with
indivisible goods, we choose an outcome close to a pseudo-equilibrium (that is, what would be
an equilibrium if we treated goods as divisible, cf. Milgrom and Strulovici (2009)). This may
result in some bidders getting less than they want at the auction prices, or alternatively a change
in the auctioneer’s supply.

Solving the PMA is straightforward when all bids are positive. Suppose the auctioneer sells a
fixed supply bundle s and makes a collection of (positive) buyback bids, B0, that demands s at
some sufficiently low price. This allows the auctioneer to express reserve prices for each good
and any further preferences (cf. Section 5.2). Let B1, . . . ,Bm be the collections of bids made
by the bidders, [m], and B be the set of all the bids made in the PMA, that is, B0∪· · ·∪Bm. We
assume all bids demand 0 at sufficiently high prices. In our setting, a competitive equilibrium
allocation of bundles x0, . . . ,xm to the bid collections B0,B1, . . . ,Bm is exactly one which
maximises welfare, that is, the sum of the utilities of the auctioneer and the bidders, subject
to these allocations summing to supply s. So we can use mathematical programming to find
this allocation.

t1 = t2 = 1, and m=Q) to buy back Q units of good 1 if p2 ≥ p1 + r̃ and of good 2 otherwise. (Cf. the related bid
in Section 2.3; bids of this kind are used in the Bank of England’s PMA, as discussed in Section 5.4.)

Note that D(p) is (strong) substitutes if −S is.
28In particular, the auctioneer can choose its supply after seeing the other bids (assuming it chooses rules to permit

itself to do this). Assuming the auction implements the resulting equilibrium prices, this will not affect the fact that
“small” bidders, at least, have little incentive to distort their expressed preferences.

29Since preferences are substitutes, there is a unique price vector, all of whose entries are the lowest among any
equilibrium price vectors (see Milgrom and Strulovici 2009, Proposition 3); it is not hard to find this price vector in
practical applications.

30See Milgrom and Strulovici (2009) and Baldwin and Klemperer (2019b) for examples with substitutes bidders
without an equilibrium. Baldwin and Klemperer (2019b) use the geometric characterisation of demand described in
Section 3.1 to develop conditions under which equilibrium is guaranteed. Baldwin et al. (2020, 2021, 2023b) offer
extensions of equilibrium existence guarantees to non-transferable utility.
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If goods are divisible, the PMA with positive bids is solved by the following linear program
(LP) in which yb represents the allocation to bid b.31 Writing b= (rb; tb;mb), and Ib for the
set of goods in which b is interested, the program is:

max
∑

j∈[m]0

∑
b∈Bj

rb · yb

s.t.
∑
i∈Ib

1

tbi
yb
i =mb, ∀b ∈ B (bid demand constraints),

∑
b∈B

yb
i = si, ∀i ∈ [n] (supply constraints),

xj =
∑
b∈Bj

yb, ∀j ∈ [m]0 (bidder allocations),

yb ≥ 0, ∀b ∈ B.

For divisible goods, the solution(s) of this LP and the corresponding shadow prices in its dual
are guaranteed to exist and are competitive equilibrium allocations and prices. See Corollary F.4
for details.

With indivisible goods (and positive bids), the LP solution is a solution of the PMA only
if the allocations to bidders are integer bundles. However, we can find such a solution if it
exists (as it always does for strong substitutes, even though not in general) by also solving the
mixed-integer linear program (MILP) obtained by restricting the xj in the LP to integer values.
A solution to the MILP is an equilibrium of the indivisible PMA if and only if it achieves
the same welfare as the solution of the original LP (cf. Bikhchandani and Mamer (1997)). If no
equilibrium exists, the LP solution forms a pseudo-equilibrium which we can use to find a close
outcome with integer bundles. In practice, we find that reasonably-sized auctions can easily be
solved using commercial MILP solvers. The strong-substitutes PMA can be solved even more
efficiently by formulating the LP as a minimum-cost network flow problem and applying the
network simplex algorithm. (Corollary F.5 gives details.)

When all the bids are positive, the LP’s solution automatically allocates goods to a set of
bids that would choose them at the shadow price vector in the solution. But if there are also
negative bids, our simple program will not in general handle them correctly.32 So we need to
proceed a little differently: if the auction wants to allocate s in total, as above, then it must
allocate s+ z to positive bids, and −z to negative bids, for some z. The value of the solution
to the LP above for supply s + z when only the positive bids are included is vB+(s + z),
and the value of the solution to the LP above for supply z when only the negative bids are
included, but using the absolute values of their multiplicities, is v|B−|(z) (see Lemma F.3).
So solving our problem requires finding the correct value of z, and the total welfare for our
problem will be vB+(s+ z)− v|B−|(z) for this z. But we know that the shadow price vectors
in the two programs must be the same at the auction solution (so that the two programs are
selecting consistent sets of bids). And this in fact means that the solution must be a stationary
point of vB+(s + z) − v|B−|(z) with respect to z (and the corresponding shadow prices are

31See Corollary F.4, Baldwin and Klemperer (2019a) and Baldwin et al. (2024). In implementations we replace
any −∞ entries in bids’ roots by large negative values. We also allow yb

0 to take arbitrary positive values (unlike the
convention for bundles in Section 2.1)—the quantities of the null good allocated clearly have no significance.

32Allocations to negative bids reduce the objective, so the LP would wrongly allocate (true) goods to negative bids
with low value roots, while not allocating them to negative bids with higher value roots.
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the competitive equilibrium prices). Proposition F.6 shows this for the general substitutes case,
and Baldwin et al. (2024) present a method for finding the correct z, and thereby solving, the
strong-substitutes case.

Baldwin et al. (2023a) provides an alternative method of finding the equilibrium prices in
the strong-substitutes case. This method takes advantage of the special structure of strong-
substitutes preferences to use a variant of standard steepest descent methods for discrete func-
tions (following Kelso and Crawford (1982), Milgrom (2000), Gul and Stacchetti (2000),
Ausubel (2006) and Murota et al. (2013, 2016)). However, it achieves greater efficiency by
‘leaping’ between boundaries of the UDRs of the aggregate demand’s LIP, instead of taking
unit steps. This method is proved to be polynomial-time.

Baldwin et al. (2024) tests a range of examples and shows that neither of these two methods
for finding equilibrium prices (in the strong substitutes case) consistently dominates the other
in practice. We expect both methods can be extended to general substitutes PMAs.

Finding equilibrium entails finding allocations as well as prices, of course. If many bids
are interested in more than one good (including the null good) at the equilibrium prices, this
creates a possibly-complicated tie-breaking problem. When all bids are positive, a solution
arises automatically as a solution to the LP. Baldwin et al. (2023a) offers a polynomial-time
algorithm that solves the general (positive and negative bids) strong-substitutes case.

5.4. The Bank of England’s Product-Mix Auction

The “Indexed Long-Term Repo” auction that the Bank of England (“the Bank”) uses to sell
loans to financial institutions was originally a special case of a strong-substitutes PMA, and it
remains close to a special case. Its implementation is now based on a linear program that is
related to the one described in the previous subsection.

The Bank auctions n “vertically differentiated” goods, so good j is always valued more
highly than good j − 1.33 Bidders were initially permitted to make collections of positive
strong-substitutes bids. Although Klemperer (2008) gave an example of the use of negative
bids, and also mentioned the possibility of allowing general substitutes bids, he did not rec-
ommend implementing these initially, since preferences requiring them seemed unlikely to be
common.34

The Bank also followed Klemperer (2008)’s proposal to describe its own preferences for the
quantities, qj(p), it wishes to supply in terms of a set of “supply functions” that are easy to
represent graphically. This helps both the Bank and its bidders understand the auction. The
Bank initially chose supply functions that specified that

∑
i≥j qi(p) was a function only of the

price difference pj − pj−1 (for 2≤ j ≤ n). It also initially specified a maximum total quantity
Q (i.e.,

∑
i qi(p)≤Q), and that all bids should meet or exceed reserve prices on the respective

goods.
This “supply functions” approach is equivalent to Section 5.2’s approach of representing

preferences as a vector of fixed supplies, s, plus buyback bids. For example, if n = 2, the
(only) supply function is q2(p) = f(p2 − p1) for some increasing function f , and we also have
q1(p) + q2(p) ≤ Q. That is, the Bank would sell up to Q units in total of two goods, and (if
prices exceed the reserves) sell ≥ q2 units of good 2 if p2 ≥ p1 + f−1(q2). This corresponds,
in Section 5.2’s description, to choosing s1 = s2 =Q and making Q separate buyback bids, in

33Good j is a loan which requires collateral that is less liquid than that required for the otherwise-identical loan
that is good j − 1, so good j commands the higher interest rate (i.e., higher price). Fisher et al. (2011), Frost et al.
(2015) and Fulmer (2022) describe the context in which the auction was introduced, and the Bank’s objectives.

34The usefulness of negative bids in the Bank of England’s context may increase as technology develops to allow
banks to better coordinate their different operations (see Baldwin et al. (2024)).
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which the kth buyback bid buys 1 unit of good 1 if p2 ≥ p1 + f−1(k) and 1 unit of good 2
otherwise, with additional buyback bids at the reserves.35

In fact, the Bank did choose to sell just two goods initially, making the auction simple
to solve: just as the Bank’s “supply function” preferences could equivalently be represented
as a set of positive bids so, conversely, the aggregation of all bidder’s bids can equivalently
be represented as (relative) “demand curves”. With just two goods, therefore, competitive
equilibrium—and so the auction’s prices, and hence its allocations–––is defined by the in-
tersection of the single supply function with a single demand curve (see Klemperer (2008)). So
the auction could easily be solved graphically, further aiding participants’ understanding and
increasing their comfort with the procedure.

Once the Bank (and its bidders) had developed experience with its relatively simple initial
case, it felt comfortable auctioning more goods and permitting the expression of more sophis-
ticated preferences. However, it also became clear during the initial auctions that the Bank was
much keener than the bidders to be able express a rich set of preferences.36 So the current ver-
sion of the Bank’s PMA takes advantage of the fact that the goods it is auctioning (loans) are
in effect continuously divisible, which permits much greater flexibility in preferences without
risking the failure of equilibrium. The total quantity of loans allocated,

∑
i qi(p), is now an in-

creasing function of all the prices (and
∑

i≥j qi(p)/
∑

i qi(p) is now a function of pj −pj−1).37

The Bank has run its PMA at least monthly since 2010, and more often when institutions are
likely to be under stress. It has been run weekly for the last several years. Most recently the
Bank has been auctioning three varieties of 6 month repos in each auction, though its current
implementation allows it to auction many more varieties simultaneously. It allocates a variable,
and in principle unlimited, total quantity—as much as £7.2 billion was allocated in one auction,
and around £240 billion has been allocated in all.38

5.5. “Arctic” (Budget-Constrained) Product-Mix Auctions

Our standard PMA substitutes auction does not allow bidders to express the budget con-
straints that are important in many real-world auctions. So in 2015 the Icelandic government
asked one of us to design a version of the PMA in which holders of blocked “offshore” funds
could use their funds to bid for alternative financial instruments, and each bidder would be

35So the kth buyback bid is as illustrated in Figure 2d with r2 = f−1(k), t1 = t2 = 1 and m = 1, cf. the
example in note 27 in Section 5.2. See Klemperer (2018, Appendix IE) and Baldwin and Klemperer (2019a) for
further discussion. Note that it is now clear that the Bank’s preferences are strong substitutes, if we treat the units as
indivisible. (The goods (loans) are in effect continuously divisible, but the Bank discretises the quantity available for
the purpose of creating supply functions.)

36So, as of this writing, the Bank is permitting bidders to bid on only a single good in each bid in their bid
collection. However, the Bank’s current implementation allows it, if it wishes, to permit bidders to make any positive
strong-substitutes bids (and many bidders bid on multiple varieties of good in the same auction).

It may seem unsurprising that the auctioneer (the Bank) wants to express more sophisticated preferences than
the bidders, since it is interested in the profit from, and the composition of, the entire volume traded, whereas an
individual bidder cares only about the price and composition of her own bundle. Note, however, that simultaneous
multiple round auctions allow the auctioneer to express less sophisticated preferences than the bidders.

37This aspect of the Bank’s preferences is implemented using a “Total Quantity Supply Schedule”. Precise details
of how the Bank now specifies its preferences are confidential, but Frost et al. (2015) give some details. The current
solution method was developed by Baldwin and Klemperer and introduced in 2014; it is described in Baldwin and
Klemperer (2019a). See also the implementation at http://pma.nuff.ox.ac.uk.

38Giese and Grace (2023) find that the Bank of England’s PMA increased welfare (as conventionally measured by
the sum of the bidders’ and the Bank’s surpluses) by around 50% in 2010 to 2014, relative to if it had either auctioned
each good in a separate auction with the quantities allocated to each good’s auction held constant over time, or run a
“reference price auction” (see note 49) with constant price differences between goods.

http://pma.nuff.ox.ac.uk/
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constrained to a budget corresponding to the quantity of blocked funds she owned. We call this
version of the PMA the “arctic” PMA.39

More recently, IMF staff proposed using a version of the arctic PMA to restructure sovereign
debt: creditors would bid to exchange their claims for alternative debt instruments, while the
auctioneer (the debtor country), and potentially outsiders offering new funds, would choose
supply schedules, as discussed in Section 5.2.40 Another potential application of an arctic PMA
is to allow shareholders to bid for choices of alternative securities for their shares in a firm
that is being acquired or otherwise restructured. See Klemperer (2018, Appendix II) for further
discussion.

An arctic bid (r;β) consists of a root vector r whose coordinates ri ∈ R are the values the
bid places on the true goods i ∈ [n], as in the standard substitutes PMA, and a budget β ∈R>0.41

The bid can be interpreted as an agent with linear valuation v(x) = r · x and budget β. So at
prices p> 0, the bidder has quasilinear utility r ·x−p ·x for all non-negative bundles such that
p · x≤ β and utility −∞ for all other bundles. We assume divisible goods in this subsection,
for simplicity.

The bid’s demand D(p) consists of the utility-maximising bundles, so we have D(p) :=
argmaxx∈R≥0, p·x≤β(r − p) · x; spending the bid’s budget β only on good i obtains β

pi
units

of that good, so utility equal to ( ri
pi

− 1)β.
So the arctic bid demands good i at p (> 0) if i maximises the “bang per buck”, ri

pi
, among

all the goods i ∈ [n] and ri ≥ pi, see Figure 9a. By contrast, the standard substitutes PMA bid
(r; t;m) demands good i at p if i maximises ti(ri − pi) among the goods i ∈ [n] and ri ≥ pi.
The standard substitutes and arctic bids therefore demand the same good(s) at all p if ti = 1

ri
,

for i ∈ [n], see Figure 9b. (Indeed, if m = β and prices are such that the bids are indifferent
about buying the zero bundle, then the bids demand identical bundles.) However, the arctic bid
spends its entire budget, so demands β

pi
of good i at p (whenever good i is uniquely demanded),

while the standard substitutes bid demands mti =
m
ri

of good i, independent of pi.
Observe that any hyperplane along which an arctic bid is indifferent between spending its

budget on either of two (true) goods i and j is normal to 1
ri
ei− 1

rj
ej , and always passes through

the origin (whereas the diagonal facets of standard substitutes bids generally do not).
A bidder who prefers a portfolio of different goods can divide her budget across multiple

separate bids; the demand of a set of arctic bids is simply the Minkowski sum of each bid’s
demand.42

39The government hired a consultancy (dotEcon) who programmed and tested Klemperer’s design, and publicly
announced it would run a PMA, but later abandoned it after the April 2016 political crisis (see Klemperer (2018),
Appendix II). Fichtl (2022) describes and analyses the algorithm used to solve this PMA. Software to run it is at
http://pma.nuff.ox.ac.uk/. Finding a competitive equilibrium in the special case that all bids are "Fisher bids" (see
below) has been extensively studied (see, e.g., Vazirani (2007)).

The nomenclature “arctic” reflects both the auction’s Icelandic origin and also the fact that budget constraints
generate preferences that cannot be described "tropically". By contrast, tropical-geometric techniques can obtain
results about equilibrium existence for agents with the quasilinear preferences for indivisible goods that the standard
substitutes PMA expresses (see Baldwin and Klemperer (2019b)).

40Klemperer suggested the design for this auction. See Willems (2021) and Lock’s implementation at http://pma.
nuff.ox.ac.uk/ for details.

41We do not include a “null” good, 0, so the vectors r, p, and x are n-dimensional in this subsection, but we
discuss below how a bidder who is not interested in the zero bundle can express this by “scaling up” r while retaining
the relative values of the ri.

42In principle, we could allow—and aggregate—standard substitutes PMA and arctic bids in the same auction.
Finster et al. (2023) analyse the case corresponding to, for example, the sale of internet adverts, where the auction-

eer has no cost (i.e., zero valuation) up to a fixed supply. In particular they show that welfare maximisation coincides
with the auctioneer’s revenue maximisation in this case.

http://pma.nuff.ox.ac.uk/
http://pma.nuff.ox.ac.uk/
http://pma.nuff.ox.ac.uk/
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(a) The demand of an arctic bid with root r = (r1, r2)
and budget β.
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(b) The demand of a standard substitutes PMA bid (for
divisible goods) with root r−0 = (r1, r2), tradeoffs
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) and multiplicity m.

FIGURE 9.—Comparison of arctic and standard bids for two goods. Both bids demand the same goods at the same
prices, but the quantities of these goods demanded by the arctic bid in the top left and bottom right regions decrease
continuously with prices p1 and p2, respectively. (If m = β they demand identical bundles on the horizontal and
vertical line segments where they are indifferent between two or more bundles.)

“Fisher markets” (see, e.g., Gale (1989)) can be understood as a special case of arctic PMAs:
a Fisher bid (r;β) can be interpreted as an agent with linear valuation v(x) = r · x and bud-
get β who has no value for any unused budget. (For example, a bidder’s budget is “points” or
“tokens” that can only be used in the current auction.) So at p> 0, the bidder’s utility is r · x
for all bundles such that p ·x= β, and −∞ for all other bundles. Observe that only the relative
values of the ri matter in a Fisher bid. So if we multiply the Fisher bid’s root by a sufficiently
large constant,43 we can then treat the bid as an arctic PMA bid.

Huang et al. (2024) show how bidders can construct arctic bid collections by answering a
series of demand queries, analogously to Goldberg et al. (2022)’s methods for the standard
substitutes PMA bidding language (see Section 5.1).

5.6. Special Words

In realistic settings of which we are aware, our languages are “compact” in that they require
fewer bids than, say, listing the valuations of all bundles explicitly (see Baldwin et al. (2024,
Section 2.3)). Nevertheless, especially with more than two goods, some natural preferences
may be cumbersome to express with bids. So we further simplify our languages by introducing
“words”. A word is a valid collection of bids that captures an economically intuitive preference,
and can be communicated more concisely. Words thus simplify the expression of preferences
and also make their representation easier to understand. Moreover, allowing bidders to use a
few special words together with all positive bids may obviate the need to use any negative bids,
and so also obviate any need for testing bid collections for validity.44

For example, a bidder who wants to select up to two pieces of fruit among an apple, a banana,
and a clementine, but at most one piece of any kind, needs to use four standard substitutes PMA

43The constant is “sufficiently large” if there is at least one good, i, for which ri > pi for every “relevant” p; a
price p is not “relevant” if every pi is high enough that supply exceeds the sum of quantities β

pi
that all bidders might

demand of that good.
44Using Proposition 4.3 (viii), it is not hard to see that the combination of any words and collections of positive

bids will be valid, since both words (by construction) and collections of positive bids are always valid.
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bids (three positive and one negative) to express these preferences.45 So we can define a “word”
that means “(up to) best k1 units from k2 specified goods (but no more than one unit of any
good)”.46

Which words are useful in a practical implementation will depend on the context. For ex-
ample, it might be helpful for a central bank running liquidity auctions to offer potentially-
distressed bidders a word signifying: “a need to borrow at least £x whatever the interest rate,
however high, preferring a type-1 loan to a type-2 loan if the interest-rate premium for type 1
is less than r%, but a wish to borrow £x1 ≥ x (in total) of type 1 at any interest rate less than
r1 and also £x2 ≥ x (in total) of type 2 at any interest rate less than r2 = r1 − r”.47

It is not hard to see that any arctic bid (r;β) can be approximated arbitrarily closely by a
collection of standard substitutes PMA bids arrayed along the diagonal line segment from the
root of that arctic bid down to the origin.48 Thus an arctic bid can be understood as another
special “word” in a standard substitutes PMA.

6. RELATED LANGUAGES AND AUCTIONS

The alternative mechanism that is most commonly used in practice instead of a PMA is
simply running a set of independent auctions, one for each good, with a fixed quantity available
in each. This is clearly less efficient than running a PMA, and Grace (2024b) shows running
separate simultaneous auctions gives lower expected surplus to both the bidders (in aggregate)
and the auctioneer, under broad conditions.49

The mechanism that corresponds most closely to the PMA is Milgrom (2009)’s proposed
“assignment auction”. As with the PMA, this would be a static auction which finds competi-
tive equilibrium prices and allocations assuming bidders express substitutes preferences. The
crucial distinction is that Milgrom’s proposal requires bidders to express their preferences us-
ing constraints that satisfy a set of partly-overlapping algebraic tree-structures. This seems
harder for non-economists to understand than the PMA’s language, which links directly to the
geometry of what bundles of goods a bidder demands at which prices in price space. Also

45The three positive bids have roots, r−0, equal to (va, vb,−∞), (va,−∞, vc) and (−∞, vb, vc), and multi-
plicity 1. The negative bid has root r−0 = (va, vb, vc) and multiplicity −1. All the bids have tradeoffs t= 1.

46As an example of how words make our representation of preferences easier to understand, 5 standard positive
strong-substitutes PMA bids plus 4 “(up to) best 2 from 3” bids is much more easily understood than its equivalent
representation as 5 + (4 · 3) = 17 positive bids plus 4 negative bids. The latter representation both contains more
vectors and has its meaning obscured by the entangling of the 16 bids that are 4 groups of 4 connected bids with each
other and with the 5 “individual” bids.

We implement “words” including “(up to) best k1 from k2 goods” in our software at http://pma.nuff.ox.ac.uk .
47So the bidder wants to borrow a total of £x1 of type 1 and £x2 of type 2 if both interest rates are suf-

ficiently low. In the standard substitutes PMA language, these preferences are expressed by the bid collection
(−∞,0,−r; 1,1,1;x), (0, r1,−∞; 1,1,1;x1), (0,−∞, r2; 1,1,1;x2), and (0, r1, r2; 1,1,1;−x). (See Klem-
perer 2008, 2010.)

48The required bids are a standard substitutes PMA bid for the maximum quantity of each good that the arctic bid
could afford at prices r (this bid is (r; t;β) with ti :=

1
ri

), plus a list of “tiny” standard substitutes PMA bids at
decreasing (but sufficiently close) price vectors, each bid of which is for the additional quantity of each good that the
arctic bid could afford if the actual prices fell the additional distance below the prices of the previous bid (these bids
are bj := (λjr; t;mj) with mj :=

1
λj

− 1
λj−1

for j ≥ 1 and 1 = λ0 > λ1 > λ2 > · · ·> 0). See Lemma F.12.
49Another inefficient alternative to a PMA that is sometimes used in government securities and energy markets

is a “reference price auction” in which all goods are sold in a single auction, but the auctioneer specifies fixed price
differences between goods (see, e.g., Armantier and Holt (2023) and Fabra and Montero (2023)). Grace (2024b) gives
conditions under which this gives less expected surplus than a PMA to both the bidders and the auctioneer. Giese and
Grace (2023) analyses the benefits of the Bank of England’s PMA relative to running either separate simultaneous
auctions or reference price auctions (see note 38).

http://pma.nuff.ox.ac.uk
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important, the assignment-auction language neither permits the representation of all possible
strong-substitutes preferences (see Fichtl (2021)) nor, to our knowledge, exactly represents any
other standard preference class.

Both the PMA and the assignment auction can be understood as static versions of the (dy-
namic) simultaneous multiple round auction (SMRA) (Milgrom, 2000). All three auctions find
competitive equilibrium if bidders with strong-substitutes valuations bid their true preferences,
but the PMA and assignment auctions also find exact competitive equilibria for broader classes
of private-value preferences, whereas the SMRA in general does not. Importantly, the PMA and
assignment auctions allow the quantities traded, as well as the prices, to depend on participants’
preferences, by contrast with the SMRA which sells a fixed bundle of goods.50 Moreover, the
PMA and assignment auctions can also implement objectives other than efficiency, which the
SMRA cannot do. And, because they are static auctions, the PMA and assignment auctions
also have the advantages of speed and/or not requiring bidders to bid in real time. Finally, al-
though bidders’ ability to observe others’ behaviour in a dynamic auction may make the SMRA
more efficient if preferences have significant “common-value” components and/or exhibit some
forms of complements,51 it can also facilitate anti-competitive practices (collusion, etc. (Klem-
perer, 2002, 2004)).

The PMA language is also related to the ‘logical bidding languages’, introduced by Sand-
holm (1999) and Fujishima et al. (1999), whose bids are constructed recursively from valu-
ations for individual bundles of goods using ‘OR’ and ‘XOR’ operators.52 A single positive
PMA bid with multiplicity 1 corresponds to multiple ‘XOR’ed unit-demand valuations, while
a collection of positive PMA bids corresponds to the ‘OR’ of the valuations corresponding to
the bids in the collection. However, the logical languages offer no straightforward analogues
to the PMA’s negative bids. Also importantly, there is, to our knowledge, no way to restrict the
syntax of these languages to express either the set of all, but only, concave substitutes valua-
tions, or the set of all, but only, strong-substitutes valuations.53 Nor do the logical languages
facilitate the geometric representation and analysis of preferences.

7. CONCLUSION

It is now commonly said that the (only) analytical framework for auctions is game theory.
By contrast, we believe competitive-equilibrium analysis can often provide a good approxi-
mation of behaviour, so we have instead focused attention on an important aspect of auction
design that is often overlooked—making it straightforward for participants to communicate
their preferences.

50However, an SMR auctioneer could sell a variable supply by offering the fixed supply which comprises the
maximum number of units of each good that could be sold of that good, and then buying back goods to ensure that
the “correct quantity” is sold (cf. our discussion in Section 5.2).

51However, the Bank of England’s current implementation of the PMA permits some limited complements prefer-
ences, and Klemperer (2010, note 20) suggested a method of extending the PMA to allow bidders to update their bids
based on reported “interim” auction prices to improve efficiency if there are significant “common-value” components.
Moreover, we know of no compelling theoretical results about the efficiency of SMRAs or related dynamic auctions
in the context of common values or complements.

52See also Boutilier and Hoos (2001), Nisan (2000), Lehmann et al. (2006), and Nisan (2005)’s survey. As defined,
these languages only express strong-substitutes valuations for up to one unit of each indivisible good, but they can
easily be extended to allow for divisible goods (see Kaleta (2013)) and multiple units of goods.

53Existing logical languages can represent either a strict subset of substitutes valuations or (e.g., in the case of the
OXS and XOS languages (Lehmann et al., 2006)) a strict superset. For example, Lehmann et al.’s XS language is
very slightly less general than the restriction to only positive bids of the strong-substitutes PMA language.
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Importantly, an institution can begin by using even simpler versions of the product-mix auc-
tion than those described here, and then allow participants to express more sophisticated prefer-
ences in later auctions when they are comfortable with the mechanism. For example, although
no other central bank has yet copied the Bank of England’s original PMA, other central bank
auctions have introduced some PMA features and we hope more will follow.
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APPENDIX A: ADDITIONAL PROOF SKETCHES FOR THE REPRESENTATION THEOREM

A.1. The Representation Theorem for the General Two-Good Case

1 3 5 6

1

2

4

5

2 4

3 2

1 1

1

2

(1,2)

(2,2)

(3,2)

(3,0)

p1

p2

(a)

Bid r t−0 m “type”

1 (0,2,3) (1,2) −1 regular
2 (0,4,4) (1,2) 1 regular
3 (0,4,4) (1,1) −2 regular
4 (0,2,−∞) (1,0) 1 cf. Figure 2b
5 (0,4,−∞) (1,0) 1 cf. Figure 2b
6 (0,−∞,3) (0,1) 1 cf. Figure 2c
7 (−∞,0,0) (1,1) 2 cf. Figure 2d
8 (−∞,0,−∞) (1,0) 1 unconditional

(b)

FIGURE A.1.—(a) LIP Lv of a general concave substitutes valuation v. The facets are labelled with their weights,
and the bundle of goods demanded in each UDR is shown. The dashed box depicts a possible bounding box. (b) The
bid collection representing v.

Figure A.1 shows an example of a concave substitutes valuation v on two goods that is not
regular. It also shows an example of a “bounding box” with horizontal and vertical sides whose
corners (in this example including (1,1) and (6,5)) are chosen so that it is large enough to
contain at least part of the interior of every facet of Lv .

In order to determine the bid collection corresponding to v, we first create regular bids at
each vertex of Lv exactly as in Section 3.3.1. As discussed in Section 3.1, these bids (bids 1,
2, and 3 in the table in Figure A.1) only generate vertical and horizontal facets that go up, and
diagonal facets that go down, so we also need to include non-regular bids.

At each intersection, p= (p1, p2), of a vertical facet of Lv with the bottom boundary of the
box, we create a bid of the type shown in Figure 2b whose LIP matches this facet around p.
Each such bid (bids 4 and 5 in our example) has root r = (0, p1,−∞), tradeoff t−0 = (1,0)
and multiplicity m = wu

v (p) (see Figure 5). These bids mean that the weights of the vertical
facets of our bid collection now all match those of Lv . For example, the newly-created bid 4
creates a facet of weight 1 at low prices along the line p1 = 2, and then cancels with bid 1 to
give weight 0 above (2,3).

Similarly, at each intersection, p = (p1, p2), of a horizontal facet of Lv with the left-hand
boundary of the box, we create a bid of the type shown in Figure 2c with root r = (0,−∞, p2),
tradeoff t−0 = (0,1), and multiplicity m=wr

v(p). Including these bids (in our example this is
just bid 6) ensures that the weights of the horizontal facets of our bid collection now all match
those of Lv , by the same argument as for the vertical facets. And since these bids’ LIPs all
consist of a single horizontal facet, the matching of the vertical facets’ weights of the LIPs of
the bid collection and of the valuation is unaffected.

Next, at each intersection, p = (p1, p2), of a diagonal facet of Lv with slope t1
t2

(expressed
in lowest terms) on either the right-hand or upper boundaries of the box, we create a bid of
the type shown in Figure 2d with root r = (−∞,0, p2 − t1

t2
p1),54 tradeoff t−0 = (t1, t2), and

54This is equivalent to choosing r = (−∞, p1, p2) and then normalising the bid as described in Section 2.2.
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multiplicity m=wdl
v (p, t1

t2
). Including these bids (just bid 7 in our example) means the weights

of these facets of our bid collection match the weights of the corresponding facets of Lv . And,
since the LIPs of these bids each consist of a single diagonal facet, their inclusion does not alter
the fact that the vertical and horizontal facet weights, and therefore all facets and weights of
the LIPs of the bid collection and of the valuation also match.

Finally, we need to adjust demand globally to the correct levels by adding bids that uncondi-
tionally demand a single good. To do this, we fix a price in a unique demand region of Lv , for
example p= (6,5). We see Dv(p) = {(1,2)} in our example, but that the uniquely demanded
bundle for our current bid collection at the same price is (0,2). (This demand comes from bid
7 only, since all other bids demand 0 at p because p is sufficiently high (see Figures 2a to 2c).)
So for our example we add a bid that unconditionally demands good 1 with multiplicity 1 (bid
8 in the table) so that the demand of our bid collection and of the valuation are the same at p.
This does not affect the LIP of the bid collection, as the LIP of an unconditional bid is “empty”.
So our final bid collection, B, satisfies both (LB,wB) = (Lv,wv) and DB(p) =Dv(p) at all
prices p, as required (cf. Proposition 3.4).

A.2. More Details for the Representation Theorem for the General Case

In n dimensions, facets are (n−1)-dimensional objects, so we refer to them using the vectors
normal to them. The LIP of a regular bid b= (r; t;m) has n(n− 1)/2 “diagonal” facets, one
with normal tiei − tje

j for each distinct pair i, j ∈ [n], which we correspondingly label F ij
b .

It also has n facets whose normal vectors are parallel to the axes; we label the facet normal to
the i-axis as F i0

b . (Recall Figure 7, which illustrates a bid for n= 3 goods.)
We begin with the case in which v is a regular valuation. For every vertex p of Lv , we in-

clude a bid (r; t;m) with root r = (0,p) for every tradeoff t such that tiei − tje
j is normal

to a facet of Lv at p, for all i, j ∈ [n], just as in the n= 2 case. But identifying the multiplic-
ity for a given (r, t) pair is more intricate than before. We first fix an orientation (i, j). Let
H(p; i, j; ti

tj
) be the hyperplane through p with normal tiei − tje

j , and refer to facets lying in
H(p; i, j; ti

tj
) as H(p; i, j; ti

tj
)-facets. When n = 2, H(p; i, j; ti

tj
) is a line, and so there are at

most two H(p; i, j; ti
tj
)-facets in Lv at any p: “up-right” and “down-left”. But for n > 2, there

may be many more.
We want to use each bid b= ((0,p); t;m) to set the weight in LB of a specific facet F ∈ F ij

b ,
so that wB(F ) =wv(F ).55 But, as for n= 2, we cannot simply set m equal to wv(F ), because
F is potentially contained in F ij

b′ for other bids, b′, that we also need to include in order to
depict the LIP locally in the neighbourhood of their own roots. For n = 2, we only have to
account for any diagonal facet on the other side of the bid’s root, r, but for n > 2 there are
generally multiple other bids.

By accounting for the weight in Lv of other H(p; i, j; ti
tj
)-facets containing p, we account

for the effects of these other bids. So we define a function mij(p, t), which is a signed sum of
the weights of these facets. When n= 2, for example, mij(p, t) =wdl(p; t)−wur(p; t).56 We

55The facet F ⊆ F ij
b we target is the one which contains p and part of the line p− λ(0, 1

t1
, . . . , 1

tn
) at which

the bid’s diagonal facets all meet. This facet may not exist in Lv . So our proof extends each LIP to a “hyperplane
of indifference prices” (HIP) which is the union of all hyperplanes in P containing a facet of the LIP. The HIP
decomposes into facets in a natural way, and the facet we require does exist in the HIP.

Facets of Lv contained in F ij
b and containing p, but not containing part of this line will also be contained in F ij

b′

for other bids b′ with roots at r but with tradeoffs t′ ̸= t.
56When n > 2, we need to account for the fact that the weight of the facet of a bid b = (r; t;m) with normal

tiei − tjej is mgcd(ti, tj) (and not simply m). So we need to divide the sum of the weights of the facets with this
normal that meet at r by gcd(ti, tj), and show that this yields an integer weight.
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can apply this function to the weights of either Lv or LB (using subscripts to denote the case,
as before). Now set the multiplicity of every bid via b = (r; t;mij

v (r−0; t)). Having done so,
we can show that it follows that mij

v (p; t) =mij
B (p; t), as when n= 2. When v is regular, this

equality implies that the weights of all H(p; i, j; ti
tj
)-facets in LB match those in Lv; we prove

this by induction across H(p; i, j; ti
tj
), just as we did for n= 2.57 We apply this argument for

every such hyperplane H(p; i, j; ti
tj
). We now know that all the weighted facets with normal

tie
i − tje

j match across Lv and LB, for any ti and tj (for our fixed i and j).
Now, as in the n = 2 case, the balancing condition tells us that finding the weights for the

diagonal (i, j)−facets automatically finds them for all the other diagonal facets. We confirm
this by observing that the choice of i and j was arbitrary: for any k ̸= l in [n] we can match the
facets with normal tkek − tle

l across Lv and LB, using a multiplicity function mkl(p; t) on
the weights of facets in H(p;k, l; tk

tl
), and the balancing condition shows us that mkl(p; t) =

mij(p; t) for balanced LIPs. So since both Lv and LB are balanced, we have mkl
v (p; t) =

mkl
B (p; t) for all k ̸= l in [n].
And we can similarly define a multiplicity function, mi0(p), which is a signed sum of

the weights of facets meeting at p and with normal ei. (For example, when n = 2, we have
m10(p) = wu

v (p) − wd
v(p).) The balancing condition shows that

∑
t tim

ij(p, t) = mi0(p),
where the sum is taken over all the tradeoffs t used at root (0,p). So, again since Lv and LB
are balanced, it follows that mi0

v (p) =mi0
B (p), and our same inductive proof again shows that,

in the regular case, these weighted facets match everywhere. So now (Lv,wv) = (LB,wB), and
Dv =DB follows as in the n= 2 case.

When v is not regular we proceed as above but, as explained in Section 3.3.2, we also need to
add bids that are not regular. We do this by introducing a bounding box that is a hyperrectangle
which is large enough that its interior contains at least part of the interior of every facet of Lv .

For every vertex p where Lv intersects the boundary of the bounding box, we create bids
whose roots’ coordinates are r0 =−∞ if p lies on any upper boundary, and r0 = 0 otherwise;
ri =−∞ for any i for which p lies on the lower i-boundary; and ri = pi otherwise. We consider
the same tradeoffs for these bids as in the regular case, except that we restrict attention to the
(true) goods in which the bid is interested (the i ∈ [n] for which ri >−∞). We then normalise
the roots of the bids as described in Section 2.2. We compute the multiplicities of our new
bids in the same way as when v is regular, except the definitions of the mij(p; t) and mi0(p)
functions consider fewer facets than before. (For example, when n = 2, we have m10(p) =
wu

v (p) for vertices p on the boundary of the box, by contrast with (recall from above) m10(p) =
wu

v (p)−wd
v(p) if p is in the interior of the box.)

Appendix A.1 illustrates the procedure for finding the non-regular bids when n= 2.
Finally, we show uniqueness of B in the same way as for n= 2. That is, if DB =DB′ then

mij
B (p; t) =mij

B′(p; t) for all goods i, j, prices p and tradeoffs t. As B and B′ are parsimonious,
there are unique bids b ∈ B and b′ ∈ B′ with any one pair (r, t) of root and tradeoff, where r is
the unique root corresponding to p. Moreover, we show that mij

B (p; t) =mij
b (p; t) must be the

multiplicity of b and, similarly, mij
B′(p; t) =mij

b′(p; t) must be the multiplicity of b′. So b= b′,
that is, the bid in B with root r and tradeoff t has an identical counterpart in B′. So B = B′.

APPENDIX B: PROOFS FOR SECTION 2.2

LEMMA 2.1: If bid b = (r; t;m) is positive (i.e., m > 0), then Db = Dvb , where the val-
uation vb : X ∩ conv{mtie

i | i ∈ I} → R is defined by vb(x) =
∑

i∈I rixi and I is the set

57For n > 2 we have to use a partial ordering: we consider the effect of a bid b after the effect of a bid b′ if F ij
b is

contained in F ij
b′ in the neighbourhood of the root of b.
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of goods in which b is interested. If b is negative (i.e., m < 0), then Db = −D|b| in which
|b|= (r; t; |m|).

PROOF: Fix prices p ∈ P . Suppose first that m > 0. Let Xb := X ∩ conv{mtie
i | i ∈ I}

be the domain of vb. Recall Dvb(p) = argmaxx∈Xb
(vb(x) − p · x) and Db(p) = X ∩

conv{mtie
i | i ∈ J}, where J = argmaxi∈I ti(ri − pi). Every bundle x in the domain Xb

of vb is associated with the (unique) coefficients λ(x) ∈ [0,1]I satisfying
∑

i∈I λi(x) = 1
for which x =

∑
i∈I λi(x)mtie

i. The utility of bundle x at p is then vb(x) − p · x =
m

∑
i∈I λi(x)ti(ri − pi). As ti(ri − pi) is maximised for exactly the goods in J , bun-

dle x achieves maximal utility if and only if all goods i with λi(x) > 0 lie in J . Hence,
Dvb(p) =X ∩ conv{mtie

i | i ∈ J}=Db(p).
For bids b = (r; t;m) with negative multiplicity m < 0, we have Db(p) = −D|b|(p) =

−Dv|b|(p), where the first equality holds by definition. Q.E.D.

LEMMA 2.2: For bids b = (r; t;m) and b′ = (r′; t′,m′), we have Db =Db′ if and only if
t = t′, m =m′, they are interested in the same set of goods, I , and ti(ri − r′i) = tj(rj − r′j)
for all i, j ∈ I . In particular, if 0 ∈ I , then Db =Db′ if and only if b= b′.

PROOF: If b and b′ satisfy the conditions given, then it is easy to check that Db =Db′ . We
now prove the converse, so suppose Db =Db′ . For price p, let Jb(p) := argmaxi∈[n]0

ti(ri −
pi) be the goods that b demands at p. Note that Jb(p) ⊆ I . Fix p̃ such that p̃i = ri for all
i ∈ I . Then Jb(p̃) = I , and this is the maximal set that Jb(p) can be. Analogously define p̃′ so
that p̃′i = r′i for all i ∈ I ′, meaning Jb′(p̃

′) = I ′ is maximal for Jb′(p). But Db =Db′ implies
Jb = Jb′ and so these maximal sets must be equal: I = I ′. Moreover, now X ∩ conv{mtie

i |
i ∈ I}=Db(p̃) =Db′(p̃) = X ∩ conv{m′t′ie

i | i ∈ I}, so that mti =m′t′i for all i ∈ I . Since
t, t′ ∈ T , and in particular are primitive integer vectors, it follows that t = t′ and m = m′.
Moreover, Jb(p̃

′) = I implies ti(ri − r′i) = tj(rj − r′j) for all i, j ∈ I . Finally, if 0 ∈ I then
r0 = r′0 = 0 and so ti(ri − r′i) = 0 for all i ∈ I , that is, r = r′. Q.E.D.

PROPOSITION 2.4: Suppose valuation v̂ for divisible goods is the concave envelope of con-
cave valuation v for indivisible goods. A bid collection B satisfies D̂B = Dv̂ if and only if
DB =Dv .

PROOF: First we recall that Lemma 2.17 of Baldwin and Klemperer (2019b) uses the sup-
porting hyperplane theorem to show that, if v̂ is the concave envelope of v, then convDv(p) =
Dv̂(p) for all p ∈ P . Now suppose DB = Dv; it follows that, for all p ∈ P , we have
D̂B(p) = convDB(p) = convDv(p) = Dv̂(p). Conversely, suppose that D̂B = Dv̂ , that is,
that convDB(p) = convDv(p) for all p ∈ P . So, for all p ∈ P , we have DB(p) = X ∩
convDB(p) = X ∩ convDv(p) =Dv(p), where the first equality follows by Equation (2.1)
and the third by concavity of v and note 12. Q.E.D.

APPENDIX C: DETAILS OF THE GEOMETRY OF DEMAND

Here we provide the necessary mathematical detail on the geometry of demand that is re-
quired for the proofs in these appendices. This material is developed with more detail and
discussion in Section 2 of Baldwin and Klemperer (2019b). We begin by showing that the LIPs
of valuations, bids, and bid collections are the union of (n−1)-dimensional rational polyhedral
complexes. Recall that X consists of all the bundles x ∈ Z[n]0 with x0 = 0.
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DEFINITION C.1—Weighted rational polyhedral complexes, (cf. Mikhalkin 2004, Defini-
tions 1,2):

(i) A rational polyhedron is the intersection of one or more half-spaces {p ∈ P | a · p≥ b}
for some a ∈ X and b ∈R.

(ii) A face of a polyhedron P consists of the price set argmaxp∈P a ·p for some fixed a ∈ X .
(iii) A rational polyhedral complex Π is a finite collection of cells C ⊆P such that

(a) Every C ∈Π is a polyhedron, and every face of C is in Π.
(b) For any two cells C,C ′ of Π with non-empty intersection, the intersection C ∩C ′ is

a face of both C and C ′.
(iv) A k-cell is a cell of dimension k and a facet is a cell of dimension n− 1.
(v) A polyhedral complex is k-dimensional if all its cells are contained in its k-cells.

(vi) A weighted polyhedral complex is a pair (Π,w) with a polyhedral complex Π and a func-
tion w that assigns a weight w(F ) ∈ Z to each facet F of Π.

Note that, unlike Mikhalkin (2004), we allow the weights of a polyhedral complex to be
negative as well as positive.

DEFINITION C.2—cf. Mikhalkin (2004, Definition 3): An (n − 1)-dimensional rational
polyhedral complex (Π,w) is balanced if, for every (n−2)-cell G of Π, the weights w(F k) of
the facets F 1, . . . , F l that contain G, and primitive integer normal vectors n1, . . . ,nl for these
facets defined by a fixed rotational direction about G, satisfy

∑l

k=1w(F
k)nk = 0.

It is known (Mikhalkin 2004, Proposition 2.1, and Baldwin and Klemperer 2019b, Propo-
sition 2.7 in the economic setting) that Lv is the union of an (n − 1)-dimensional rational
polyhedral complex Πv (see also Fact C.4 below). We call the facets of Πv the facets of Lv and
associate the following weight function wv with Πv and Lv . Fix some facet F of Πv , and let
x and x′ be the two bundles (necessarily distinct) that are uniquely demanded on either side
of F . We define wv(F ) as the greatest common divisor of the coordinates entries of x− x′.
It is immediate that wv(F ) > 0 for all facets F of Πv . We call (Πv,wv) and (Lv,wv) the
weighted polyhedral complex and weighted LIP of v. Each facet’s weight and normal vector
jointly specify the change in demand as we cross the facet.

PROPOSITION C.3—Baldwin and Klemperer (2019b, Proposition 2.4): The change in de-
mand as we change prices to cross a facet F of Lv is wv(F )n, where n is the primitive integer
vector that is normal to F and points in the opposite direction to the price change.

As the net change in demand along any price path that begins and ends at the same point is
zero, it follows that (Πv,wv) satisfies Definition C.2. Balancing and this positivity are, in fact,
the only conditions necessary for a weighted rational polyhedral complex to lead to a weighted
LIP (Lv,wv) of a valuation.

FACT C.4—The “Valuation-Complex Equivalence Theorem” (see Mikhalkin 2004, Remark
2.3 and Proposition 2.4, and Baldwin and Klemperer 2019b, Theorem 2.14, in the economic
context):

(i) If v is a valuation, then Lv is the union of an (n − 1)-dimensional rational polyhedral
complex Πv , and (Πv,wv) is balanced.

(ii) A polyhedral complex (Π,w) satisfies both the balancing condition and w > 0 if and only
if it is the weighted polyhedral complex (Πv,wv) of some valuation v. Moreover, in this
case, for any combination of price p̃ ∈ P \ Π, bundle x̃ ∈ X and r ∈ R, there exists a
unique concave valuation v satisfying Dv(p̃) = {x̃} and v(x̃) = r.
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We will now see that the weighted LIPs of bids and bid collections also decompose into
weighted polyhedral complexes, and satisfy an analogous demand change property. Lemma 2.1
defines a valuation vb whose demand is the same as that of a single positive bid b so the
valuation and bid have the same weighted LIP, which decomposes into polyhedral complex
Πvb =: Πb. As in Section 3.1, we write wb for the weight function wvb of vb, and we see imme-
diately that weighted polyhedral complex (Πb,wb) is balanced and satisfies the demand change
described in Proposition C.3. Moreover, a negative bid b has the same LIP as the associated
valuation v|b| but now (Πb,wb) = (Πv|b| ,−w|b|). It is easy to verify that the balancing and
demand change properties still hold.

In order to formally define and understand the weighted LIP (LB,wB) of a bid collec-
tion B, we first consider an ‘extended’ weighted LIP that includes 0-weighted facets. Let
L′

B =
⋃

b∈BLb. Note that L′
B is the union of an (n− 1)-dimensional rational polyhedral com-

plex Π′
B, a property that it inherits from the structure of the individual Πb. By construction,

LB ⊆ L′
B. We call the connected components of P \ L′

B the unique bid demand regions (UB-
DRs) of L′

B. By construction, these UBDRs consists of all the n-dimensional polyhedra that
arise as the intersection of a UDR from Lb for each b ∈ B:{⋂

b∈B

U b | U b is a UDR of Lb and
⋂
b∈B

U b is n-dimensional

}
.

Every facet of L′
B is contained in a facet of Lb for at least one b ∈ B. We define a weight

function w′
B(F ) =

∑
b∈Bwb(F

′) for every facet F of L′
B. Here we have extended the weight

function wb of each bid LIP such that wb(F ) :=wb(F
′) for any (n− 1)-dimensional subset F

of a facet F ′, and wb(F ) = 0 for all other subsets. (Note that it is possible for w′
B(F ) to be 0

if F is contained in Lb for multiple bids b with positive and negative multiplicities.)

PROPOSITION C.5: At all prices in a given UBDR of (L′
B,w

′
B), the same unique bundle is

demanded. The change in demand as we change prices to cross a facet F of L′
B is w′

B(F )n,
where n is the primitive integer vector that is normal to F and points in the opposite direction
to the price change.

PROOF: Suppose p and q are two prices in the same UBDR of L′
B. By construction, both

lie in the same UDR of Lb for each bid b ∈ B, so every bid uniquely demands the same bundle
at p and q. By definition of DB, aggregate demand is thus unique and identical at p and q.

Now suppose R and R′ are two UBDRs of (L′
B,w

′
B) separated by facet F of L′

B, and let x
and y be the unique bundles demanded in R and R′. We will show that x− y = wB(F )n for
the unique primitive vector n normal to F pointing from R to R′.

Suppose first that B consists of a single bid b. Recall that (Lb,wb) = (Lvb ,wvb) if the bid
is positive and (Lb,wb) = (Lvb ,−wv|b|) otherwise, so the statement follows from Lemma 2.1
and Proposition C.3. Now suppose B contains two or more bids. Let U and V be the two
UBDRs of L′

B on either side of F . For each bid b ∈ B, these UBDRs U and V are either
contained in the same UDR of Lb, or they are contained in neighbouring UDRs of Lb that are
separated only by a facet F b that contains F . Let xb and yb be the bundles uniquely demanded
by each b ∈ B at prices in U and V , so that x =

∑
b∈B xb and y =

∑
b∈B yb (by definition

of DB). Fix some bid b ∈ B. If U and V lie in distinct neighbouring UDRs of Lb, then we
already know that xb − yb = wb(F

b)n = wb(F )n. Otherwise, i.e., U and V lie in the same
UDR of Lb, it is immediate that xb = yb and wb(F ) = 0 imply the same. Hence x − y =∑

b∈B(x
b − yb) =

∑
b∈Bwb(F )n = wB(F )n, where the last equality holds by definition of

wB =
∑

b∈Bwb. Q.E.D.
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Now let (ΠB,wB) be the weighted (n−1)-dimensional rational polyhedral complex obtained
by removing all zero-weighted facets from (Π′

B,w
′
B), as well as all lower-dimensional cells that

are faces only of zero-weighted facets. Note that removing these cells results in another (n−1)-
dimensional complex, so ΠB is well-defined. Define LB as the union of the polyhedra in ΠB to
get the weighted LIP (LB,wB). In Section 3.1, LB is defined as the set {p ∈ P | |DB(p)| ≥ 2}
of prices at which B is indifferent between two or more bundles. These two definitions are
equivalent: by Proposition C.5, p ∈ P satisfies |DB(p)| ≥ 2 if and only if it lies in a facet of
L′

B with non-zero weight; and the latter holds if and only if p ∈ LB.
Note that the UDRs of LB may not be convex. However, each UDR of LB is the union of

one or more convex UBDRs of L′
B with zero-weighted facets separating any two neighbouring

UBDRs of this union. This allows us to prove an analogue to Proposition C.5 for (LB,wB).

PROPOSITION C.6: At all prices in a given UDR of (LB,wB), the same unique bundle is
demanded. The change in demand as we change prices to cross a facet F of LB is wB(F )n,
where n is the primitive integer vector that is normal to F and points in the opposite direction
to the price change.

PROOF: Suppose p and q are two prices in the same UDR of LB. If p and q lie in the
same UBDR of (L′

B,w
′
B), or in neighbouring UBDRs separated by a zero-weighted facet, then

Proposition C.5 tells us that the same unique bundle is demanded at p and q. Otherwise, there
exists a finite sequence of prices starting with p and ending with q so that every consecutive
pair of prices lies in neighbouring UDRs of (L′

B,w
′
B) separated by a zero-weighted facet, so

the same result holds. For the second statement, observe that facet F of LB contains at least
one facet F ′ of L′

b, and these two facets share the same weight and normal vector, so Proposi-
tion C.5 implies the statement. Q.E.D.

APPENDIX D: PROOFS FOR SECTION 3

We defer the proofs of Theorem 3.1 and Corollaries 3.2, 3.3 and 3.7 to Appendix G. This
appendix proves the remaining results from Section 3.

PROPOSITION 3.4: Concave valuation v and bid collection B satisfy (Lv,wv) = (LB,wB)
and Dv(p̃) =DB(p̃) for some specific price p̃ ∈ P if and only if Dv =DB.

PROOF: If Dv =DB, then Lv = LB and Dv(p̃) =DB(p̃) for any p̃ are immediate. More-
over, by Propositions C.3 and C.6, (Lv,wv) = (LB,wB).

Conversely, suppose (Lv,wv) = (LB,wB) and Dv(p̃) =DB(p̃) for some specific p̃ ∈ P . Fix
any p̂ ∈ P \ Lv , let Dv(p̂) = {x} and DB(p̂) = {y}, and define ∆= x− y. Propositions C.3
and C.6 tell us that the change in demand as we cross facets of (Lv,wv) = (LB,wB) is identical
for v and B, so DB(p) = ∆ +Dv(p) for all p ∈ P \ Lv . For any price p ∈ Lv , both Dv(p)
and DB(p) consist of the integer bundles in the convex hull of demand at prices in the UDRs
infinitesimally close to p (see note 12 and Equation (2.1)), so Dv(p) = ∆+DB(p) holds for
all p ∈ P . Finally, Dv(p̃) =DB(p̃) implies ∆= 0. Q.E.D.

LEMMA 3.8: Suppose Lv is the LIP of a substitutes valuation. Then it is the LIP of a regular
valuation if and only if, for all i, j ∈ [n],

(i) every (i,0)-facet of Lv is bounded below in all coordinates;
(ii) every (i, j)-facet of Lv is bounded above in coordinates i and j.
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PROOF: Suppose first that (Lv,wv) is the weighted LIP of a regular valuation v. We will
show in turn that the two conditions (ii) and (i) hold.

Assume for a contradiction that F is an (i, j)-facet of Lv with i, j ∈ [n] that is not upper-
bounded in coordinates i and j. By the first regularity condition, there exists pi ∈ R such
that xi = 0 for all x ∈ Dv(p) at prices p satisfying pi > pi. As F is not upper-bounded in
coordinates i and j, its relative interior contains a price p′ with p′i > pi. F has positive weight
wv(F ) > 0 and is normal to aei − bej for some a, b ∈ Z>0. So xi ̸= 0 for some bundle x ∈
Dv(p

′) by Proposition C.3, a contradiction.
Now suppose for a contradiction that F is an (i,0)-facet of Lv not lower-bounded in coor-

dinate j ∈ [n] \ {i}, and let H be the hyperplane containing F . Our goal is to show that the
existence of F violates the second regularity condition, which stipulates that, for any p ∈ P ,
we have xi = 0 for all bundles x ∈Dv(p− λej) when λ is sufficiently large. To do this, we
now find prices p ∈ F so that the half-ray p− λej with λ > 0 lies entirely in facets contained
in H . By Proposition C.3, this then implies, for every λ > 0, the existence of a bundle x with
xi ̸= 0 that is demanded at p− λej : a contradiction.

Firstly, every (j,0)-facet and (i, j)-facet which meets F does so in a face for which j is fixed;
as Lv has finitely many faces, and F is not bounded below in coordinate j, we can choose p in
the relative interior of F with pj below any such intersections. Secondly, Lv has finitely many
(i, k)-, (k, l)- and (k,0)-facets with k, l ∈ [n]0 \ {i, j} and we can make small changes in pk
(without altering the fact that p ∈ F ) to ensure that p− λej is disjoint from all such facets. So
the only facets of Lv not in H which might meet our half-ray p− λei are (j, k)-facets with
k ∈ [n] \ {i, j}.

If the half-ray is contained entirely in F , we are done. So suppose not. Let p′ be the
point of intersection of the half-ray with the boundary of F , and let G be an (n − 2)-
dimensional face of F containing p′. By construction, G is the intersection of H and a (j, k)-
facet F ′ of Lv with k /∈ {i,0} and normal vector tje

j − tke
k, so the affine span of G is{

el, 1
tj
ek + 1

tk
ek | l ∈ [n] \ {i, j, k}

}
. Observe that G therefore does not lie in any other (j, k)-

facet with different slope σ ̸= tj
tk

, or any (j, l)-facet with l ∈ [n]\{i, j, k}. As the normal vectors
of F and H are linearly independent and (Lv,wv) is balanced, H contains a facet of the same
weight on either side of G. So, after crossing G, our half-ray p− λej lies in another facet in
H of the same weight as F . Apply this argument repeatedly to see that p−λej is contained in
such a facet for all λ > 0, so regularity is violated.

Now suppose that Lv satisfies conditions (i) and (ii). There are in fact many valuations giving
rise to the same LIP: we can add a constant bundle to that which is demanded in any UDR, and
we can add a constant scalar to the valuation. We need to show that one of these valuations v
is regular. In order to show that v satisfies the first regularity condition, we first fix p= λ1 and
argue that all prices p≥ p lie in the same UDR of Lv if we choose λ > 0 sufficiently large. As
Lv has a finite number of (i,0)-facets, we can choose λ greater than the i-coordinate of each
such facet. And by condition (ii), for every i, j ∈ [n]0 we can choose λ greater than the upper
bound (in coordinate i or j) for every (i, j)-facet. Now there are no facets in the price region
p≥ p, and so this price region must be contained within a single UDR. Then, by Fact C.4, there
exists a (concave) valuation—call it v without loss of generality—with LIP Lv that demands 0
in this UDR. Suppose also that v(0) = 0.

Now, fix a good i and prices p satisfying pi ≥ pi, and suppose x ∈ Dv(p). If p ≥ p then
xi = 0 because x = 0. So suppose p ̸≥ p, and let p′ be the prices obtained by setting p′j =
max{pj , pj} for all goods j ∈ [n] \ {i}. We can consider the change in price from p to p′ as an
increase in price in each of the goods j ̸= i in turn. It is possible that demand is not unique at
p, at p′, or at intermediate prices in this sequence of price increases, but we can make a small
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generic perturbation of all the prices in this chain so that we have a sequence of increases in
the price of one good j ̸= i between two prices at which demand is unique. Now the substitutes
property tells us that this overall price change from prices near p to prices near p′ cannot
decrease the demand of good i. As we know that the demand of good i is 0 at or near p′, it
is thus also 0 near p. By taking small generic perturbations in enough directions, we can infer
that this holds for all bundles demanded at prices close to p, and so that xi = 0 itself. Thus v
satisfies the first regularity condition (with threshold p).

In particular, this also implies that this valuation v demands only non-negative bundles at all
prices, as increasing the price of any one good sufficiently leads to a demand of 0 for that good,
and as Dv satisfies the law of demand (cf. Definition 4.2).

Now we argue that v also satisfies the second regularity condition. Fix a good i and prices p.
We want to show that there exists large λ > 0 such that demand of goods j ∈ [n] \ {i} is 0
at prices p− λei for all λ≥ λ. We will argue this by first identifying sufficiently large λ and
then considering prices p′,p′′, where p′ = p− λei with λ ≥ λ, and p′′ satisfies p′′i = p′i and
p′′j ≥ p′j .

First, we know from condition (i) that all (j,0)-facets are bounded below in coordinate i, as
(by their nature) are all (i,0)-facets, so for λ exceeding large enough λ we know that every
p′,p′′ with p′i = p′′i = pi −λ will be below all such facets. Second, consider (i, j)-facets where
j ∈ [n]\{i}. Such a facet lies in a hyperplane H = {p ∈Rn | tipi− tjpj = α} for some α> 0.
Observe that for sufficiently large λ, prices p′ = p− λei always satisfy tip

′
i − tjp

′
j < α and

moreover if p′′i = p′i and p′′j ≥ p′j then also tip
′′
i − tjp

′′
j < α. As every LIP has finitely many

facets, we can pick λ large enough that these conditions are satisfied for all such facets and all
λ > λ. So these facets do not separate such p′ and p′′. Now, for convenience, fix p′ = p− λei

for one such λ, and let x′ be a demanded bundle at p′. We wish to show that x′
j = 0 for all

j ∈ [n] \ {i}.
Let p′′ be the prices obtained from p′ by setting p′′i = p′i and p′′j = max{p′j , pj} for every

j ∈ [n] \ {i}, and let x′′ be demanded at p′′. Observe p′′j ≥ p′j for all j ̸= i. As v satisfies
the first regularity condition with thresholds p, we see that x′′

j = 0 for j ∈ [n] \ {i}. By our
choice of λ, by changing prices from p′ to p′′ we do not cross any (j,0) or (i, j)-facets, for any
j ∈ [n] \ {i}. Now we see that we also do not cross (j, k)-facets with goods j, k ∈ [n] \ {i}. If
we were to do so, then demand would transfer between goods j and k (at tradeoffs specified by
the facet’s normal vector). But as x′′

j = x′′
k = 0, this would imply that demand for either good j

or good k were negative on the other side of such a facet. We have already seen that there are
no such bundles in the domain of v. So we cross no facets between p′ and p′′, and so x′

j = 0
for all j ̸= i in [n]. Q.E.D.

COROLLARY D.1: The LIP LB of a regular bid collection satisfies the conditions of
Lemma 3.8.

PROOF: First suppose that B contains only one bid, b. If b has positive multiplicity then
Db =Dvb by Lemma 2.1, and vb clearly satisfies Definition 3.6, and so Lb satisfies the condi-
tions of Lemma 3.8. The case of negative multiplicity b follows because Lb = L|b|. The result
follows for arbitrary B because LB ⊆

⋃
b∈BLb and all facets of all LIPs Lb are bounded. Q.E.D.

The following corollary is also useful to prove Corollaries 3.3 and 3.7.

COROLLARY D.2:
(i) If there exists p ∈ P , J ⊆ [n] and t ∈ T such that p+ λ

∑
i∈J

ei

ti
∈ Lv for every λ > 0,

then part (i) of Definition 3.6 (regular valuations) fails.
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(ii) If there exists p ∈ P and i ∈ [n] such that p− λei ∈ Lv for every λ > 0, then part (ii) of
Definition 3.6 (regular valuations) fails.

PROOF: Suppose (i) holds. Then, because it is contained in the (finite) set of facets of Lv ,
the half-ray p+ λ

∑
i∈J

ei

ti
∈ Lv must at all points be contained in some (j, k)-facet for some

distinct j, k ∈ J ⊆ [n]. As there are finitely many such facets, there must be at least one such
that is unbounded above, and in particular unbounded above in coordinate j. But this facet
has positive weight and so xj ̸= 0 for some bundle demanded everywhere in this facet, by
Proposition C.3. This implies failure of part (i) of Definition 3.6.

Suppose (ii) holds, so p−λei ∈ Lv for all λ > 0. As Lv is a finite union of facets, it follows
that any point in p−λei must be contained in a (j, k)-facet F for distinct j, k ∈ [n]0\{i} where
j ̸= 0. But each such facet has positive weight and so xj ̸= 0 for some bundle x ∈Dv(p−λei)
by Proposition C.3, so that part (ii) of Definition 3.6 fails. Q.E.D.

APPENDIX E: PROOFS FOR SECTION 4

PROPOSITION 4.3: For any bid collection B, the following statements are equivalent.
(i) Bid collection B is valid, i.e., there exists a valuation v such that Dv =DB.

(ii) There exists a concave substitutes valuation v such that Dv =DB.
(iii) The valuation vB is well-defined and satisfies DvB =DB.
(iv) DB satisfies the law of demand.
(v) The valuation vB satisfies πvB = πB.

(vi) The indirect utility function πB of B is convex.
(vii) For all p ∈ P , we have DB(p) =DB+(p)−D|B−|(p).

(viii) The weight wB(F ) of every facet of LB is positive.

PROOF: We first show (iv) =⇒ (viii). For the purpose of contradiction, suppose F is a
facet of (LB,wB) with wB(F ) < 0. By construction, F is normal to a vector aei − bej for
some i, j ∈ [n]0 with i > j and a, b ∈ Z>0. Pick a point r in the relative interior of F , and
let p := r − εei and q := r + εei for some infinitesimal ε > 0. We will show that the law of
demand (cf. Definition 4.2) is violated for p and q. By construction, p and q lie in the UDRs
of (LB,wB) on either side of F . By Proposition C.6, we have x− y = wB(F )(aei − bej) for
the bundles x and y uniquely demanded at p and q. As xi − yi =wB(F )a > 0 and so xi > yi,
the law of demand is violated.

Next we argue (viii) =⇒ (ii). Recall that (LB,wB) can be decomposed into an (n − 1)-
dimensional rational polyhedral complex ΠB, and that wB(F ) > 0 for every facet F of LB
(which is, by definition, also a facet of ΠB). Moreover, (ΠB,wB) is balanced for any bid collec-
tion B. Fix some p̃ ∈ P \ LB and {x̃}=DB(p̃). By Fact C.4, there exists a concave valuation
v such that (Lv,wv) = (LB,wB), v(x̃) = 0, and Dv(p̃) = {x̃}, so Proposition 3.4 tells us that
Dv =DB. Finally, as the facets of LB (and so Lv) are normal to vectors of type aei − bej for
some i, j ∈ [n]0 and a, b ∈N, we have that v is a substitutes valuation (cf. Section 3.1).

It is immediate that (ii) implies (iv) and (i). Next, we show (i) =⇒ (iii). Recall (de-
fined above Proposition C.5) that (L′

B,w
′
B) is the ‘extended’ weighted LIP that contains zero-

weighted facets, and that LB ⊆L′
B =

⋃
b∈BLb. We modify the notation for the definition of vB

used in the text to incorporate the role of prices: for any price p ∈ P \L′
B, let i(b,p) denote the

unique good that each b ∈ B demands at p. For the valuation v with Dv =DB, which exists
by assumption, we start by showing that for every bundle x demanded in a UBDR of L′

B, and
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every price p within these UBDRs at which x is demanded (x ∈Dv(p)), we have

v(x) = vB(x) =
∑

(r;t;m)=b∈B

mti(b,p)ri(b,p). (E.1)

To see this, first fix a specific bundle x̃ demanded in a UBDR of L′
B, and a price p̃ in this

UBDR. We can assume that Equation (E.1) holds for x̃ and p̃, by adding a constant term to
v if necessary (which does not change the demand of v, cf. Mikhalkin 2004, Remark 2.3).
Secondly, i(b,p) = i(b,p′) for any two prices p,p′ in the same UBDR of L′

B, for any bid
b ∈ B, so if Equation (E.1) holds for x and p, then it also holds for x and p′. Now suppose
p,p′ are in neighbouring UBDRs of (L′

B,w
′
B), and let x and x′ be the (not necessarily distinct)

two bundles demanded in these UBDRs. If price vector q is on the facet separating the two
UBDRs, then each bid b= (r; t;m) ∈ B demands both goods i(b,p) and i(b,p′) at q, so

m max
i∈[n]0

ti(ri − qi) =mti(b,p)(ri(b,p) − qi(b,p)) =mti(b,p′)(ri(b,p′) − qi(b,p′)).

Taking the sum over all bids and recalling that mti(b,p) is the number of units of good i(b,p)
that bid b= (r,p,m) demands at p, we see∑

(r;t;m)∈B

mti(b,p)ri(b,p) − q ·x=
∑

(r;t;m)∈B

mti(b,p′)ri(b,p′) − q ·x′. (E.2)

But as x and x′ are bundles respectively demanded by B, and hence by v, at p and p′, both
are demanded by v at prices q on the facet separating the two UBDRs, so v(x) − q · x =
v(x′) − q · x′. Subtracting this expression from Equation (E.2) demonstrates that if Equa-
tion (E.1) holds for x and p, then it also holds for x′ and p′. Inductively apply this result to
see that Equation (E.1) holds for all bundles demanded within UBDRs, and all prices in these
respective UBDRs.

For any bundle x that is demanded at p ∈ L′
B, we can perturb generically to get prices

p′ and note that the unique bundle x′ demanded at p′ is also demanded at p. This implies
v(x)− v(x′) = p · (x−x′). But this corresponds to the definition of vB(x), so vB(x) = v(x)
for all bundles demanded by B.

We now show that (iii) =⇒ (v). For prices p not in L′
B, the uniquely demanded bundle at

p is x =
∑

(r;t;m)=b∈Bmti(b)e
i(b). So, applying the definition of πB and Equation (E.1), we

see that πB(p) = vB(x) − p · x = πvB(p). Moreover, as P \ L′
B is dense, it then follows by

continuity of πB and πvB that πB(p) = πvB(p) for every p ∈ P .
It is well-known that the indirect utility function of a valuation is convex, so (v) =⇒ (vi).
We show that (vi) =⇒ (viii), so suppose πb is convex. Fix a facet F of (LB,wB) normal to

aei− bej for some i, j ∈ [n]0 with i > j and a, b ∈N. Let p be a point in the relative interior of
F and define q± := p± εei for some infinitesimal ε > 0. Note that q+ and q− lie in the UDRs
of LB on either side of F . Let x+ and x− be the bundles demanded at q+ and q−. We define
B̂− as the bids in B that demand good i at q−, and B̂+ likewise, so that x−

i =
∑

(r;t;m)∈B̂− mti
and x+

i =
∑

(r;t;m)∈B̂+ mti. Proposition C.6 tells us that the demand change between prices
q± is given by w(F )(aei − bej) = x− −x+, so w(F ) is non-negative if and only if x+

i ≤ x−
i .

We will now show that this holds.
By construction, each b = (r; t;m) demands i(b,q−) at q− and at p, so this good max-

imises ti(ri − pi) and ti(ri − q−i ) over i ∈ [n]0 (by definition of Db). It follows that πB(p) =∑
(r;t;m)∈Bmti(b,q−)(ri(b,q−)−pi(b,q−)) and πB(q

−) =
∑

(r;t;m)∈Bmti(b,q−)(ri(b,q−)−q−
i(b,q−)

)
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(by definition of πB in Equation (4.1) of Section 4.2). Hence,

πB(p)− πB(q
−) =

∑
(r;t;m)∈B

mti(b,q−)(q
−
i(b,q−)

− pi(b,q−)) =−ε
∑

(r;t;m)∈B̂−

mti =−εx−
i .

The second equality uses the fact that q−i = pi − ε and q−j = pj for all j ̸= i, so q−
i(b,q−)

=

pi(b,q−) for all b /∈ B̂−. Analogously, we see that πB(p)− πB(q
+) = εx+

i . As πB is convex, it
satisfies midpoint convexity 2πB(p) ≤ πB(q

−) + πB(q
+). Rearranging and substituting, this

implies εx+
i − εx−

i = 2πB(p)− πB(q
−)− πB(q

+)≤ 0, and so x+
i ≤ x−

i as required.
Finally, we show that (i) =⇒ (vii) =⇒ (viii) in Proposition E.4 below. Q.E.D.

Suppose A and B are two finite subsets of P . The Minkowski sum A+B of A and B consists
of all points x+y with x ∈A and y ∈B. We use

∑
to denote the Minkowski sum of multiple

sets. The Minkowski difference A−B consists of all points x ∈Rn such that x+B ⊆A. (Note
that A−B is not equal to the Minkowski sum of A and −B.)

If p are prices at which every bid demands a unique bundle, then DB(p) is a single bundle
consisting of the (signed) sum of the bundles demanded by all the bids. Proposition E.4 tells
us that, in general, DB(p) is the Minkowski difference between the demands of the positive
and negative bids of B at p. To prove Proposition E.4, we make use of the following technical
lemma about Minkowski differences. We also recall some facts from polyhedral theory.

FACT E.1—See, e.g., Baldwin et al. (2024) Lemma 3 and Schneider (2013) Lemma
3.1.11: Suppose A,B ⊆ Rn are nonempty finite sets satisfying Zn ∩ (convA) = A and
Zn ∩ (convB) = B. Then Zn ∩ (convA − convB) = A − B. Moreover, if C,D ⊆ Rn are
non-empty, compact, convex sets, then (C +D)−D =C .

FACT E.2—See e.g. Grünbaum 1967, Theorem 2.4.9 and Exercise 15.1.1: For any convex
polytope P and vertex v of P , there exists d ∈ Rn such that v is the unique minimiser of the
linear function d · x over P . Moreover, v also minimises d′ · x over P for any d′ obtained by
infinitesimally perturbing entries of d. Conversely, for any generic d ∈Rn, the minimiser v of
d · x over P is unique and a vertex. If P is the Minkowski sum of two (convex) polytopes A
and B, then v is the unique sum of two vertices of A and B, and these two vertices uniquely
minimise d ·x over A and B, respectively.

Fact E.2 allows us to prove:

LEMMA E.3: If B0 and B1 are valid bid collections, then B0∪B1 is valid and, for all p ∈ P ,

convDB0∪B1(p) = convDB0(p) + convDB1(p)

PROOF: We show that the extremal points of each side of this equation are contained in the
other. Write B := B0 ∪ B1. We know B is valid by Proposition 4.3 (viii) ⇔ (i), and by noting
that the weight of any facet of LB is the sum of the weights of facets of LBo and LB1 that
contain it.

By Fact E.2, every extremal point of convDB0(p) + convDB1(p) uniquely minimises
(q− p) ·x′ over convDB0(p) + convDB1(p) for some q ∈ Q(p), and we can choose q so
that the minimum of (q − p) · x′ over convDB(p) is also unique. Conversely, every extremal
point of convDB(p) uniquely minimises (q−p) ·x′ over convDB(p) for some q ∈Q(p), and
we can choose q so that the minimum of (q−p) ·x′ over convDB0(p)+ convDB1(p) is also



44

unique. Moreover, if x̂ uniquely minimises (q− p) ·x′ over convDB0(p) + convDB1(p) for
some q ∈Q(p) then x̂= x0+x1 where x0 uniquely minimises (q−p) ·x′ over convDB0(p)
and x1 uniquely minimises (q− p) ·x′ over convDB1(p).

So we can consider all extremal points of convDB0(p) + convDB1(p) and of convDB(p)
by considering unique minimisers x0, x1 and x of (q − p) · x′ for appropriately chosen
q over, respectively, domains convDB0(p), convDB1(p) and convDB(p). We will show
that x0 + x1 = x. As extremal points of convDB′(p) are in DB′(p) for any bid collec-
tion B′, it follows that x0 + x1 ∈ DB(p) ⊆ convDB(p) and that x ∈ DB0(p) + DB1(p) ⊆
convDB0(p) + convDB1(p), as required.

So fix q such that we have unique minimisers x, x0 and x1 of (q − p) · x′ over, respec-
tively, domains convDB(p), convDB0(p) and convDB1(p). Moreover, it is without loss of
generality to choose q ∈Q(p) arbitrarily close to p (as it is only the vector direction of q − p
which is important). As these are vertices of integer polytopes, we know that x,x0,x1 ∈ X .
We now argue that x is the unique bundle demanded by B at q. Firstly, x ∈ DB(p) implies
v(x)− p · x≥ v(x′)− p · x′ for all x′ ∈ X , where v is the valuation with the same demand
as B whose existence follows from validity of B. Secondly, (q − p) · x< (q − p) · x′ for any
x′ ∈DB(p) thus implies v(x)−q ·x> v(x′)−q ·x′ for all x′ ∈DB(p). As q is close to p, we
know that DB(q)⊆DB(p) and so can conclude that DB(q) = {x}. That DB0(q) = {x0} and
DB1(q) = {x1} follow in exactly the same way. By our definition of demand for bid collections
(Equation (2.1)) it now follows that x= x0 −x1. Q.E.D.

Let B+ be the positive bids of B, and |B−| denote the negative bids of B, with the absolute
value taken for their multiplicities.

PROPOSITION E.4: For any valid bid collection B,

DB(p) =DB+(p)−D|B−|(p). (E.3)

Conversely, if Equation (E.3) holds for all p ∈ P , then the weight wB(F ) of every facet F of
LB is positive.

PROOF OF PROPOSITION E.4: We now have the tools to derive:

DB+(p)−D|B−|(p) =X ∩ [convDB+(p)− convD|B−|(p)]

=X ∩ [(convDB(p) + convD|B−|(p))− convD|B−|(p)]

=X ∩ convDB(p)

=DB(p),

Here, the first and third equality follow from Fact E.1. For the second inequality, we ob-
serve that removing redundancies from B ∪ |B−| yields B+ and apply Lemma E.3 to see
that convDB+(p) = convDB(p) + convD|B−|(p). The final equality follows by definition
of DB(p) (see Equation (2.1)).

We prove the contrapositive of the second statement, so suppose that LB has a facet F such
that wB(F ) < 0. Then L|B−| has a facet F− containing F , while LB+ may have a facet F+

containing F , or may not, in which case we write wB+(F+) = 0. In either case, it follows
immediately from the definition of wB that wB(F ) =wB+(F+)−w|B−|(F

−).
Choose a price p̃ in the relative interior of F , and such that p̃ /∈ LB+ if F+ does not exist.

Then p̃ is in the relative interior of F−; and of F+, if it exists, as these both contain F . But then
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|D|B−|(p̃)|=w|B−|(F
−)+1, by consideration of Proposition C.6 and Equation (2.1); similarly

|DB+(p̃)|= wB+(F+) + 1. Now wB+(F+)−w|B−|(F
−) = wB(F )< 0 implies |DB+(p̃)|<

|D|B−|(p̃)|. But then x+D|B−|(p̃)⊆DB+(p̃) is impossible, and so DB+(p̃)−D|B−|(p̃) = ∅,
that is, Equation (E.3) fails. So the second statement must hold. Q.E.D.

It also follows from Proposition 4.3 that the UDRs of valid bid collections form open convex
polyhedra that constitute all the prices at which some bundle is demanded, a property inherited
from UDRs of the LIPs of valuations. (For invalid bid collections, the set of prices at which
some bundle is demanded need not be convex.)

APPENDIX F: SUPPLEMENTAL MATERIAL FOR SECTION 5

Recall from Section 5.2 that the auctioneer expresses their preferences using bids B0; to
implement reserve prices they must “buy back” the entire supply s at some (sufficiently low)
price. Each bidder j ∈ [m] submits a bid collection Bj . The setting of Section 5.3 makes the
following standard assumptions:

ASSUMPTION F.1: The auctioneer expresses their preferences using bids B0 and demands
the entire supply s at some price. The bidders [m] submit bid collections B1, . . . ,Bm. All bids
demand 0 at sufficiently high prices.

These mild assumptions guarantee existence of equilibrium when goods are divisible or agent
preferences are strong-substitutes (Proposition F.2). Moreover, when all bids are positive, the
LP in Section 5.3 finds an equilibrium with divisible goods (Corollary F.4); and a network flow
formulation finds an equilibrium with indivisible goods when all bid collections are additionally
strong-substitutes (Corollary F.5).

PROPOSITION F.2: Under Assumption F.1, the PMA with divisible goods, or with indivisible
goods and strong-substitutes bid collections B0, . . . ,Bm, admits a competitive equilibrium that
clears supply. Moreover, equilibrium allocations maximise welfare among all feasible alloca-
tions.

We next present an alternative way of formulating the valuation vB (defined in Section 4.1)
of a valid bid collection, when all bids are positive. This uses the convex extensions v̂b of the
valuations vb that are associated with every b ∈ B by Lemma 2.1. In the strong-substitutes case,
we can work directly with the vb.

For convenience, we write Xb and XB for the domains of vb and vB respectively, so that
XB :=

⋃
p∈P DB(p). The domains of their convex extensions v̂b and v̂B are respectively

convXb and convXB.

LEMMA F.3: For any collection B of positive bids, vB(x) = v̂B(x) for all x ∈XB, and

v̂B(x) =max

{∑
b∈B

v̂b(x
b) | xb ∈ convXb and

∑
b∈B

xb = x

}
,∀x ∈ convXB. (F.1)

If, additionally, all bids in B are strong-substitutes, then

vB(x) =max

{∑
b∈B

vb(x
b) | xb ∈Xb and

∑
b∈B

xb = x

}
,∀x ∈XB. (F.2)
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To understand Lemma F.3, consider the individual bids as each coming from a different in-
dividual “bid-agent”. Each is allocated a bundle xb, with x available in total. The definition of
demand for a bid collection in Equation (2.1) implicitly allows fractional allocations to indi-
vidual bids, and so to these bid-agents. The right-hand side of Equation (F.1) is the maximum
social welfare which can be obtained in this way, when x is available. Moreover, a minor gen-
eralisation of Proposition F.2 tells us that competitive equilibrium always exists when goods
are divisible, so this is the social welfare under competitive equilibrium. So, by Equation (F.1),
vB values a bundle x at the welfare it achieves under competitive equilibrium with divisible
goods.

When all bids are strong substitutes, then competitive equilibrium also exists with indivisi-
ble goods. So, in Equation (F.2), we do not need to assume that bid-agents might be allocated
fractional quantities. But without the additional assumption of strong substitutes, competitive
equilibrium can fail with indivisibilities, and so an integer allocation may not achieve the max-
imum welfare that is achievable with divisibilities. Hence Equation (F.2) does not necessarily
hold when bids in B are not strong substitutes.

Lemma F.3 underpins the methods to find equilibrium prices, described in Section 5.3. When
bids are positive, we can use linear programming to find competitive equilibrium, in the cases
of divisible goods and strong substitutes (Corollaries F.4 and F.5 respectively). When there are
negative bids, we can find these prices by minimising the difference of such LPs, as Proposi-
tion F.6 shows.

COROLLARY F.4: If all participants submit positive bid collections for divisible goods sat-
isfying Assumption F.1, then the LP from Section 5.3 finds a competitive equilibrium allocation,
and the shadow prices on the LP’s supply constraints are corresponding equilibrium prices.

COROLLARY F.5: If all participants submit positive strong-substitutes bid collections (for
indivisible goods) satisfying Assumption F.1, then the network simplex algorithm efficiently
finds a competitive equilibrium, and the shadow prices on the LP’s supply constraints are
corresponding equilibrium prices.

Recall that B+ is the subset of positive bids in B, and |B−| is the subset of negative bids with
absolute values taken for their multiplicities.

PROPOSITION F.6: For any valid bid collection B,

vB(x) =min
{
vB+(x+ z)− v|B−|(z) | z ∈X|B−|

}
.

We now turn to the proofs of these results. Recall from Section 2.4 that we write D̂B(p) =
convDB(p). We first observe:

LEMMA F.7: If B :=
⋃m

j=0Bj is the union of valid bid collections B0, . . . ,Bm, then B is
valid and D̂B(p) =

∑m

j=0 D̂Bj (p) for all p ∈ P , and convXB =
∑m

j=0 convXBj .

PROOF: We prove for m = 1; the general case follows immediately. That D̂B(p) =

D̂B0(p) + D̂B1(p) is given by Lemma E.3. Now, if x ∈ convXB then for some p ∈ P ,
we know x ∈ D̂B(p) = D̂B0(p) + D̂B1(p) ⊆ convXB0 + convXB1 , and so convXB ⊆
convXB0 + convXB1 . Conversely, consider a vertex x of convXB0 + convXB1 . Then x
is the unique sum x = x0 + x1 of two vertices of convXB0 and convXB1 respectively,
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which both uniquely minimise some p · x′ over convXB0 and convXB0 (Fact E.2). This
unique minimisation still holds if we multiply p by an arbitrarily large scalar, so we ob-
tain p such that x0 ∈ DB0(p) and x1 ∈ DB1(p) and thus x ∈ D̂B(p). But if all vertices
of convXB0 + convXB1 are in D̂B(p) then we have the required subset inclusion, and so
convXB = convXB0 + convXB1 , as required. Q.E.D.

Both Proposition F.2 and Lemma F.3 will follow easily from the following result:

LEMMA F.8: Given valid bid collections B0, . . . ,Bm, then for every x ∈
∑m

j=0 convXBj ,
there exists a price p ∈ P and allocation {xj}j∈[m]0 , such that x =

∑m

j=0x
j and xj ∈

D̂Bj (p). Moreover, then

m∑
j=0

v̂Bj (xj) = v̂(x) := max

{
m∑

j=0

v̂Bj (yj) | yj ∈ convXBj and
m∑

j=0

yj = x

}
. (F.3)

and x ∈Dv̂(p). Conversely, if x=
∑m

j=0x
j where xj ∈ convXBj satisfies

∑m

j=0 v̂Bj (xj) =

v̂(x), then there exists p ∈ P such that x ∈Dv̂(p) and xj ∈ D̂Bj (p) for all j ∈ [m]0.
If, additionally, B0, . . . ,Bm are strong substitutes bid collections and x ∈

∑m

j=0XBj , then
in both parts above we may take xj ∈DBj (p) for all j ∈ [m]0, and

v̂(x) = v(x) := max

{
m∑

j=0

vBj (yj) | yj ∈XBj and
m∑

j=0

yj = x

}
. (F.4)

PROOF: Write B :=
⋃m

j=0Bj . By Lemma F.7, B is valid and D̂B(p) =
∑m

j=0 D̂Bj (p). This
is the aggregate demand for divisible goods of the bid collections B0, . . . ,Bm. Its demand set
is convex for every p ∈ P , and therefore by the supporting hyperplane theorem, the associated
valuation vB is concave, and thus demands every bundle in its domain (Mas-Colell et al., 1995,
pp. 135-138, especially Proposition 5.C.1(v)). Its domain is convXB =

∑m

j=0 convXBj by
Lemma F.7.

Fix x ∈ convXB. As seen above, there exists p ∈ P such that x ∈ D̂B(p) =
∑m

j=0 D̂Bj (p).
Thus, for all j ∈ [m]0, there exists xj ∈ D̂Bj (p), and

∑m

j=0x
j = x. Moreover, that means that

for all j ∈ [m]0, and yj ∈ convXBj , we know

v̂Bj (xj)− p ·xj ≥ v̂Bj (yj)− p · yj , (F.5)

so assume that
∑m

j=0 y
j = x and sum these inequalities over j ∈ [m]0. Subtract p ·x from both

sides to obtain
∑m

j=0 v̂Bj (xj) ≥
∑m

j=0 v̂Bj (yj), whenever
∑m

j=0 y
j = x. So Equation (F.3)

holds.
Moreover, for any allocation {yj}j∈[m]0 , which need not sum to x, we have Equation (F.3)

holding. So, summing, we can infer that v̂(x)− p · x≥ v̂(y)− p · y for all y ∈ convXB. So
x ∈Dv̂(p). Note that x was arbitrary in convXB; we can conclude that v̂ is concave.

Now, suppose x=
∑m

j=0x
j where xj ∈ convXBj satisfies

∑m

j=0 v̂Bj (xj) = v̂(x). Then x

is in the domain of v̂, so there exists p ∈ P such that x ∈Dv̂(p). Suppose, for a contradiction,
that xk /∈ D̂Bk(p) for some k ∈ [m]0, and let {yj}j∈[m]0 satisfy yj = xj for j ̸= k and yk ∈
D̂Bj (p). Then v̂Bj (yj)−p ·yj ≥ v̂Bj (xj)−p ·xj for every j ∈ [m]0, and the inequality is strict
for k. So, if y =

∑m

j=0 y
j , then

∑m

j=0 v̂Bj (yj)− p · y >
∑m

j=0 v̂Bj (xj)− p · x. But v̂(y) ≥
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j=0 v̂Bj (yj) and v̂(x) =
∑m

j=0 v̂Bj (xj) by assumption. So v̂(y) − p · y > v̂(x) − p · x,
contradicting x ∈Dv̂(p).

Now suppose B0, . . . ,Bm are strong substitutes and x ∈
∑m

j=0XBj . In this case DB(p) =∑m

j=0DBj (p) (Danilov et al., 2001), and so the xj found above satisfy xj ∈DBj (p) for all
j ∈ [m]0, showing that v(x) = v̂(x). Conversely, if x =

∑m

j=0x
j where xj ∈ XBj satisfies∑m

j=0 vBj (xj) = v(x), then we already know v(x) = v̂(x) and so, from the previous part, we
have existence of p such that xj ∈ D̂Bj (p) for all j ∈ [m]0. But we assumed xj ∈XBj ⊆ X
and so xj ∈ X ∩ D̂Bj (p) =DBj (p), as required. Q.E.D.

Now Proposition F.2 and Lemma F.3 are immediate corollaries.

PROOF OF PROPOSITION F.2: By Assumption F.1 we know s ∈
∑m

j=0 convXBj . So
Lemma F.8 tells us that a competitive equilibrium exists and is welfare maximising, and that
any welfare-maximising allocation forms a competitive equilibrium for some price. The case
for strong substitutes follows in exactly the same way. Q.E.D.

PROOF OF LEMMA F.3: Regard B as a list of valid bid collections, each containing only
one (positive) bid. By Lemma F.7 we know convXB =

∑
b∈B convXb and, for all p ∈ P , we

have D̂B(p) =
∑

b∈B D̂b(p). So by Lemma F.8, if x ∈ convXB then there exists p ∈ P such
that x ∈

∑
b∈B D̂b(p) = D̂B(p) =Dv̂B , and this holds if and only if x ∈Dv̂(p), where v̂ is

the function defined on the right-hand side of Equation (F.1). By Corollary 4.1, it follows that
v̂B = v̂+K for some constant K , but if we consider x demanded at prices p at which all bids
demand an unique bundle, we can verify that K = 0 and v̂B = v̂. The case of strong substitutes
follows because v̂(x) = v(x) for all x ∈XB, in Lemma F.8. Q.E.D.

We now prove that the PMA with divisible goods can be solved using the LP from Section 5.3
if the bid collections are positive.

PROOF OF COROLLARY F.4: Let B = B0 ∪ · · · ∪Bm. Let x0,x1, . . . ,xm be an equilibrium
allocation for the divisible PMA with

∑
j∈[m]0

xj = s, which exists by Proposition F.2. By
definition, xj lies in XBj for each participant j ∈ [m]0. Lemma F.3 tells us that there exists a
bundle yb ∈ convXb for each b ∈ Bj so that xj =

∑
b∈Bj yb and v̂Bj (xj) =

∑
b∈Bj v̂b(y

b) =∑
b∈Bj rb · yb. Recall from Lemma 2.1 that Xb =X ∩ conv{mtie

i | i ∈ I}, where I is the set
of goods in which b is interested and m > 0. So yb ∈ convXb implies that the bid demand
constraint of the LP and yb ≥ 0 are satisfied, for each b ∈ B. Moreover, xj =

∑
b∈Bj yb is the

bidder allocation constraint of the LP, and x0 + · · ·+ xm = s immediately implies the supply
constraints. So (xj)j∈[m]0 and (yb)b∈Bj form a feasible solution to the LP. Moreover, the LP’s
objective function expresses the allocation’s welfare

∑
j∈[m]0

v̂(xj) =
∑

j∈[m]0

∑
b∈Bj rb ·yb.

Now suppose that this equilibrium allocation (xj)j∈[m]0 and (yb)b∈Bj is not an optimal so-
lution for the LP, and that (x̃j)j∈[m]0 and (ỹb)b∈Bj is a feasible solution that achieves a greater
objective function value. The bid demand constraints of the LP imply that ỹb ∈ convXb for
each b ∈ B, and the bidder allocation constraints imply that x̃j =

∑
b∈Bj ỹ

b for all partici-
pants j ∈ [m]0. So Lemma F.3 tells us that v̂Bj (x̃j)≥

∑
b∈Bj v̂b(ỹ

b) =
∑

b∈Bj rb · ỹb for each
participant j ∈ [m]0, and so the welfare

∑
j∈[m]0

v̂Bj (x̃j) achieved by allocation (x̃j)j∈[m]0 is
lower-bounded by

∑
j∈[m]0

∑
b∈Bj rb · ỹb. But this latter term is strictly larger than the welfare
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of the equilibrium allocation (xj)j∈[m]0 and (yb)b∈B. This is a contradiction because equilib-
rium allocations maximise welfare by Proposition F.2. So the LP is bounded, and a feasible
solution of the LP is optimal if and only if it is an equilibrium allocation.

To see that the shadow prices p on the LP’s supply constraints are supporting equilibrium
prices, form the dual LP and note that the complementary slackness conditions imply yb ∈
Db(p). Q.E.D.

With positive strong-substitutes bids (for indivisible goods), we can find equilibrium by in-
terpreting the LP from Section 5.3 as a minimum-cost network flow problem. These can be
solved efficiently using standard methods such as the network simplex algorithm. See Ahuja
et al. (1993) for an introduction to minimum-cost network flows and the network simplex al-
gorithm.

PROOF OF COROLLARY F.5: As bids are strong-substitutes, the bid demand constraints of
the LP simplify to

∑
i∈Ib

yb
i =mb. We first rewrite the LP without the redundant bidder allo-

cation constraints (and thus without variables xj). This LP can then be understood as a flow
network consisting of a source node, a target node t, nodes B and nodes [n]0. The source node
is connected to each bid b ∈ B by an arc with capacity mb and cost 0. Each bid b ∈ B is con-
nected to each good i ∈ [n]0 (including the null good) in which it is interested by an arc with
infinite capacity and cost −rbi , and each good i ∈ [n]0 is connected to the target node by an
arc with capacity si (s0 =∞) and cost 0. The flow constraints of the problem ensure that any
feasible flow in the network is an allocation to bidders, and vice versa. Moreover, a competitive
equilibrium allocation (of indivisible goods) exists by Proposition F.2, so the network prob-
lem has feasible flows and integer minimal-cost flows correspond one-to-one to equilibrium
allocations. Moreover, as the arc capacities are integer, the network simplex algorithm finds an
integer minimal-cost flow. Finally, the shadow prices to the supply constraints in the original
LP are supporting equilibrium prices by complementary slackness conditions. Q.E.D.

Our method for proving Proposition F.6 mirrors that of Baldwin et al. (2024, Theorem 1),
which is the strong substitutes special case. We first give a useful lemma summarising the
relationships between valuations, convex conjugates and subdifferentials. Recall that, given a
function f : domf →R where domf ⊆Rn, we define its convex conjugate f∗ : domf∗ →R
by f∗(p) = supx∈domf (p · x − f(x)), where domf∗ is the set of points on which f∗(p) is
finite-valued. And the subdifferential ∂f of f is the correspondence

∂f(x) = {p ∈Rn | p ·x− f(x)≥ p · y− f(y) ∀y ∈Rn}.

The domain dom∂f of the subdifferential is those x ∈ domf for which ∂f(x) ̸= ∅.
We also extend our definition of concave extension: for any valuation v :X →R with finite

domain X ⊆ Zn, the concave extension v̂ : convX →R is the minimal concave function such
that v̂(x)≥ v(x) for all x ∈X ; equality holds for all x v is concave). Now:

LEMMA F.9—(cf. Baldwin et al. (2024, Lemma 1)): For a valuation v :X →R, with X ⊆
Zn, write fv =−v̂, where v̂ is the concave extension of v. Then, for all x ∈ convX and p ∈Rn,
we have:

(i) ∂fv(x) = {p ∈Rn | x ∈ convDv(−p)}.
(ii) f∗

v (p) = πv̂(−p) = πv(−p) and ∂f∗
v (p) = convDv(−p);

(iii) dom∂fv = domfv = convX and dom∂f∗
v = domf∗

v =Rn;
(iv) −f∗∗

v (x) = infp∈Rn(πv(p) + p ·x) = v̂(x)
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PROOF: It is clear by definition of fv and ∂fv that ∂fv(x) = {p ∈ Rn | x ∈Dv̂(−p)}, so
Part (i) follows because Dv̂(−p) = convDv(−p), cf., e.g., Baldwin and Klemperer (2019b,
Lemma 2.17). Thus ∂fv(x) ̸= ∅ if and only if x is demanded for some prices; as v̂ is con-
cave this holds for every x ∈ dom v̂ = convX = domf , which proves the first part of Part
(iii). Next, it is clear that f∗

v (p) = πv̂(−p). But for all q ∈ Rn there exists x ∈ Dv(q) ⊊
convDv(q) = Dv̂(q) and so πv̂(q) = v̂(x) − q · x = v(x) − q · x = πv(q), so the first
part of (ii) holds. Moreover, by Rockafellar (1970, Theorem 23.5), x ∈ ∂f∗

v (p) if and only
if p ∈ ∂fv(x), which combined with Part (i) is sufficient to prove Part (ii). Moreover, then
∂f∗

v (p) ̸= ∅ for all p ∈ Rn, and similarly f∗
v (p) is well defined for all p ∈ Rn, so this demon-

strates the second part of Part (iii).
Finally by definition −f∗∗

v (x) = − supp′∈domf∗
v
(p′ · x − f∗

v (p
′)) = infp′∈Rn(−p′ · x +

π∗
v(−p′)), where we apply parts (ii) and (iii). But, letting p = −p′, this is equal to

infp∈Rn(πv(p) + p · x). Moreover, f∗∗
v = fv because f is closed and convex (Rockafellar,

1970, Theorem 12.2) and so f∗∗
v (x) = v̂(x). Q.E.D.

We make use of Toland-Singer duality, in the following form:

FACT F.10—(Tao and An (1997, Theorem 1)): Let f : domf → R and g : domg → R be
convex continuous functions with closed and convex domains domf ⊆ domg ⊆ Rn and such
that domg∗ ⊆ domf∗ ⊆ Rn. If one of the differences f(x)− g(x) and g∗(y)− f∗(y) has a
minimum in domf , respectively domg∗, the other difference also has one, and

min
x∈domf

f(x)− g(x) = min
y∈domg∗

g∗(y)− f∗(y).

Moreover, if x̃ minimises f(x)− g(x), then any ỹ ∈ ∂g(x̃) minimises g∗(y)− f∗(y). Con-
versely, if ỹ minimises g∗(y)− f∗(y), then any x̃ ∈ ∂f∗(ỹ) minimises f(x)− g(x).

We need to show:

LEMMA F.11—(cf. Baldwin et al. (2024, Lemma 4)): Let B be a valid collection of bids.
Then XB +X|B−| ⊆XB+ .

PROOF: Observe that removing redundancies from B ∪ |B−| gives B+, so convXB +
convX|B−| = convXB+ by Lemma F.7. But XB +X|B−| ⊆ X ∩ (convXB + convX|B−|).
Since vB+ is concave, we know that X ∩ convXB+ =XB+ . So XB +X|B−| ⊆XB+ . Q.E.D.

PROOF OF PROPOSITION F.6: To prove this result, we drop the 0th coordinates and assume
that bundles x ∈ Zn and prices p ∈Rn. This makes no difference to the result, as p0 = x0 = 0 in
every case, but it makes it more straightforward to apply the tools of Lemma F.9 and Fact F.10.
Since B+ and |B−| consist exclusively of positive bids, they are valid, as is X by assumption,
and so all parts of Proposition 4.3 apply to all three bid collections.

Fix x ∈XB. Let f : convX|B−| →R be the convex extension of z 7→ −v|B−|(z) and let g :
convX|B−| →R be the convex extension of z 7→ −vB+(x+z). By Lemma F.11 we know g is
well defined on this domain, and observe that domf = domg. Moreover, domg∗ = domf∗ =
Rn by Lemma F.9. By Lemma F.9 Part (ii) and Proposition 4.3 Part (v), we know that f∗(p) =
π|B−|(−p), and infer that g∗(p) = πB+(−p)− p · x. So we apply Fact F.10 to f − g: if the
minimum exists on either side, then

min
z∈convX|B−|

v̂B+(x+ z)− v̂|B−|(z) = min
p∈Rn

πB+(−p)− π|B−|(−p)− p ·x (F.6)



THE LANGUAGES OF PRODUCT-MIX AUCTIONS 51

But we can re-write the right-hand side of Equation (F.6) as

min
p∈P

πB+(p)− π|B−|(p) + p ·x=min
p∈P

πB(p) + p ·x=min
p∈P

πvB(p) + p ·x= v̂B(x)

where we apply the definition of πB from Section 4.2; Part (v) from Proposition 4.3; and
Lemma F.9 Part (iv). So the left-hand side of Equation (F.6) also has a solution, which is equal
to v̂B(x), which we can also write as vB(x), since x ∈ X .

It remains to show that we can simply minimise the left-hand side of Equation (F.6) over
X|B−|. But, by Fact F.10, if p minimises the right-hand side of Equation (F.6) then any z ∈
∂f∗(p) = convD|B−|(p) minimises the left-hand side of Equation (F.6). And as D|B−|(p) ̸= ∅,
we know convD|B−|(p) always contains an integer bundle, so we may assume that z ∈ X , and
so z ∈ X ∩ convX|B−| =X|B−| (see above the statement of Lemma F.3). So Equation (F.6)
does indeed reduce to minz∈X|B−|

vB+(x+ z)− v|B−|(z), as required. Q.E.D.

F.1. Material for Section 5.6

We write ∥x−y∥1 =
∑

i∈[n](xi−yi) to mean the L1-distance (or Taxicab distance) between
two vectors x and y.

LEMMA F.12: Suppose D(r;β) is the demand correspondence of a single arctic bid (r;β).
For any ε > 0, we can create a collection B of standard substitutes PMA bids (for divisible
goods) so that the following holds at any prices p ∈ P with p ≥ ε: For every x ∈D(r;β)(p),
there exists y ∈ D̂B(p) with ∥x − y∥1 ≤ ε. Likewise, for every y ∈ D̂B(p), there exists x ∈
D(r;β)(p) with ∥x− y∥1 ≤ ε.

PROOF: Fix ε > 0 and prices p ≥ ε. Define α = max{λ > 0 | λri ≤ ε,∀i ∈ [n]} so that
p ≥ ε implies pi ≥ αri for all i ∈ [n]. Now construct a bid collection B = {b0,b1, . . . ,bK}
of K + 1 ≫ 0 standard PMA bids bk := (rk; t;mk) with roots evenly spaced along the line
segment from αr to r. Define the bids’ tradeoff vector t as ti :=

1
ri

for all i ∈ [n]. The bids’
roots are rk := αr + K−k

K
(1 − α)r, and the multiplicities are mk := β

rki ti
−

∑k−1

j=0 m
j . (The

choice of i for the definition of multiplicity is irrelevant, as rki ti = α+ K−k
K

(1−α) for any i.)
Suppose first that the arctic bid and B both demand a unique bundle at p. If the arctic bid

demands 0, then p> r and all standard bids in B also demand 0, so we are done. So suppose
this is not the case. The arctic bid demands bundle β

pi
ei for some unique good i ∈ [n]. Let l

be the largest k ∈ [K − 1]0 with rki > pi. Such a k exists because rKi = αri < pi < ri = r0i .
The standard bids b0, . . . ,bl demand bundle mktie

i, while the bids bl+1, . . . ,bK demand 0.
So the aggregate bundle demanded by B is

∑l

k=0m
ktie

i = β

rli
ei. By our choice of l, we have

β

rli
< β

pi
< β

rl+1
i

, so the L1-distance between the bundles demanded by the arctic bid and B is

thus ∆ := β

pi
− β

rli
< β

rl+1
i

− β

rli
. As the derivative of function f(k) = β

rk+1
i

− β

rki
is non-negative,

f(k) on domain [K − 1]0 is maximised at k =K − 1, and so f(K − 1) = 1
αri

− 1

αri+
1
K

(1−α)ri

is an upper bound on f(l) and thus on ∆. It is clear that f(K − 1)< ε
n+1

for sufficiently large
K , so ∆≤ f(0)< ε

n+1
.

Now suppose the arctic bid is indifferent between two or more bundles at p, and let
x ∈ Dr;β(p). Then x is the convex combination of m ≤ n + 1 bundles xj ∈ Dr;β(p

j) for
generic prices p1, . . . ,pm infinitesimally close to p, and x =

∑
j∈[m] λjx

j where λj = [0,1]

and
∑

i∈[m] λj = 1. By the previous paragraph, we know that there exists yj ∈DB(p
j) with
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∥xj − yj∥1 ≤ ε
n+1

. Moreover,
∑

j∈[m] λ
jyj =: y ∈ DB(p) by the definition of DB. It is

straightforward that

∥x− y∥1 = ∥
∑
j∈[m]

(xj − yj)∥1 ≤
∑
j∈[m]

∥xj − yj∥1 ≤ ε.

The argument for the other direction is analogous. Q.E.D.

APPENDIX G: FULL PROOFS FOR THEOREM 3.1 AND COROLLARIES 3.2, 3.3 AND 3.7

Here we prove the remaining results from Section 3.

THEOREM 3.1: For any substitutes concave valuation v, there exists a unique bid collection
B such that DB =Dv .

COROLLARY 3.2: For any strong-substitutes valuation v, there exists a unique bid collec-
tion B such that DB =Dv , and all bids in B are strong-substitutes bids.

COROLLARY 3.3: For any substitutes concave valuation v, there exists a regular bid col-
lection B for any p ∈ P , such that DB(p) =Dv(p) for all p ≥ p, if there exists p such that
Dv(p) = {0} for all p≥ p.

COROLLARY 3.7: For any regular valuation v, there exists a unique bid collection B such
that DB =Dv , and all bids in B are regular bids.

G.1. Preliminaries

Recall that the roots of standard substitutes PMA bids can take real values together with −∞,
so we define R :=R∪{−∞} and the set of all possible roots R := {r ∈Rn+1 | r0 ∈ {0,−∞}}.
Recall that I := {i ∈ [n]0 | ri >−∞} is the set of goods in which the bid is interested. Recall
that T ⊆ Z[n]0 ≥ 0 is the set of tradeoff vectors, for which t0 = 1 and t−0 is a primitive integer
vector. Moreover, a bid b= (r; t;m) ∈R× T × Z satisfies ri =−∞ =⇒ ti = 0 for i ∈ [n].
This appendix uses a different normalisation to the body text. Having found B as described
in this appendix, they can then be re-normalised as described in Section 2.2. More generally,
Lemma 2.2 tells us that a bid can be normalised by defining any consistent procedure for
changing its root from r to an r′ in the set {r′ ∈ P | ti(ri − r′i) = tj(rj − r′j),∀i, j ∈ I}.

Let Nε(p) = {q ∈ P | ∥q−p∥< ε} denote the ε-neighbourhood in price space around price
vector p. (The norm ∥ · ∥ we choose is arbitrary, but we assume the L1-norm for concreteness.)

We define the characteristic vector χJ ∈ {−1,1}[n]0 of set J ⊆ [n]0 as χJ
k := 1 if k ∈ J and

χJ
k :=−1 otherwise. We also use the shorthand χJ

0k := χJ
0χ

J
k (so χJ

0k =−1 if exactly one of 0
and k is in J , and it is 1 otherwise).

A substitutes hyperplane is a hyperplane in price space P that is normal to aei − bej for
co-prime a, b ∈ N and distinct i, j ∈ [n]0. We call (i, j) the orientation of the hyperplane with
distinct i, j ∈ [n]0, and the co-prime integers a, b ∈ N define its slope a

b
. If i or j are 0, this

slope is redundant and denoted 1. Throughout, we make extensive use of the notation

H(r; i, j; a
b
) := {q ∈ P | (aei − bej) · (q− r) = 0}
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with r ∈R and ri, rj <−∞ to denote the substitutes hyperplane normal to aei − bej contain-
ing point riei + rje

j . The half-spaces on either side of H(r; i, j; a
b
) are denoted

H−(r; i, j; a
b
) := {q ∈ P | (aei − bej) · (q− r)≤ 0},

H+(r; i, j; a
b
) := {q ∈ P | (aei − bej) · (q− r)≥ 0}.

Note that H(r; i, j; a
b
) =H(r; j, i; b

a
) and H+(r; i, j; a

b
) =H−(r; j, i; b

a
).

It is useful to describe explicitly the LIP Lb of an individual bid b = (r; t;m) interested
in goods I . Recall that Lb is the set of prices at which b is indifferent between two or more
bundles. By definition of Db, the prices Ri := {p ∈ Rn | ti(pi − ri) ≥ tk(pk − rk),∀k ∈ I}
at which b demands good i form a convex region (and the interior of this region is the UDR
within which good i is uniquely demanded). So a bid is indifferent between goods i and j at
all prices in facet F ij

b := Ri ∩ Rj of Lb, and Lb is the union of the facets F ij
b taken over all

i, j ∈ [n]0. We can also define the facets F ij
b using our hyperplane notation:

F ij
b =H(r; i, j; ti

tj
)∩

⋂
k∈I\{i,j}

H+(r;k, j; tk
tj
). (G.1)

The vector tie
i − tje

j is normal to F ij
b . But, although t is a primitive integer vector, ti

and tj need not be coprime when n > 2. So the primitive integer vector normal to F ij
b is

1
gcd(ti,tj)

(tie
i − tje

j). Meanwhile the change in demand from crossing this F ij
b is mtie

i −
mtje

j . We conclude that wb(F
ij
b ) =mgcd(ti, tj).

G.1.1. Extending LIPs with hyperplanes

Suppose (L,w) is the weighted LIP of a substitutes valuation v or a collection B of standard
substitutes PMA bids. We can take the union of the (substitutes) hyperplanes which are the
affine spans of each facet in L, and call the resulting point set the hyperplanes of indifference
prices (HIP) H. As H is the union of a collection of substitutes hyperplanes, it is immediate
that it is the union of an (n− 1)-dimensional polyhedral complex. So, analogously to LIPs, H
inherits from this complex the faces, facets, and vertices. More explicitly, the faces of a HIP H
are the subsets of hyperplanes H ⊆H given by taking the intersection with either (or both) of
the positive or negative half-spaces defined by H ′ for all other hyperplanes H ′ ⊆H; its facets
are the (n−1)-dimensional faces; and its vertices are the intersection of n linearly independent
hyperplanes of H.

Note that any facet of H is either a subset of a facet of L, or does not meet any facet of L
(n− 1)-dimensionally. Conversely, any facet of L is either a facet of H or is subdivided into
several facets of the corresponding HIP H by other hyperplanes of the H. This allows us to
associate with (L,w) a weighted HIP (H,w) with the following weight function w. We write
w(F ) = w(F ′) for any (n − 1)-dimensional subset F of a facet F ′ of L, and w(F ) = 0 for
any (n− 1)-dimensional linear subset of P that has at most (n− 2)-dimensional intersection
with L. As argued above, in particular this gives a weight on every facet F of H (and also
on some other sets, which will be useful to us later). A weighted LIP for two goods and its
corresponding weighted HIP are illustrated in Figure G.1.

We write (Hv,wv) for the weighted HIP of valuation v and (HB,wB) for the weighted HIP
of bid collection B.

OBSERVATION G.1: Suppose (H,w) is the weighted HIP of a valuation or bid collection.
For every (n− 2)-dimensional face G of H, the weights w(F k) of the facets F 1, . . . , F l that
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(a) The LIP of a valuation. Facets are labelled with their
weights.
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(b) The corresponding weighted HIP is drawn in grey
and dashed. Facets with non-zero weight are labelled

with their weights.

FIGURE G.1.—Illustrations of a weighted LIP and weighted HIP of an ordinary substitutes valuation in price
space with two goods. Two facets of L with non-zero weight have each been divided into two facets of H, so two
non-zero facet labels have been added.

contain G, and primitive integer normal vectors n1, . . . ,nl for these facets defined by a fixed
rotational direction about G, satisfy

∑l

k=1w(F
k)nk = 0.

Note that our weighted HIPs are parsimonious in that every hyperplane contains at least one
facet with non-zero weight (cf. Section 3.1). However, it is sometimes convenient to extend
them by inserting additional “dummy” hyperplanes (which are still in substitutes directions);
all facets within a dummy hyperplane are weighted zero. Such dummy hyperplanes do not
interfere with the balancing property, but a HIP with dummy hyperplanes is not parsimonious,
so we sometimes clarify that this assumption is needed.

The HIP of a valuation or bid collection divides price space P into n-dimensional regions. In
direct analogy to LIPs, we also call these regions UDRs and note that the UDRs of a HIP H are
subsets of UDRs of the corresponding LIP L. The dividing facet F between two UDRs of H is
either contained in a facet of L, or the two UDRs are subsets of the same UDR of L, in which
case F has weight 0 in H. So in either case, the change in demand between the two UDRs is
captured by the facet normal and facet weight of F . This follow directly from the analogous
results for the weighted LIPs of valuations and bid collections in Section 3.1.

PROPOSITION G.2: At all prices in a given UDR of (H,w), the same unique bundle is
demanded. The change in demand as we change prices to cross a facet F of H is w(F )n,
where n is the primitive integer vector that is normal to F and points in the opposite direction
to the price change.

It is useful to write out the HIPs Hb and HB of an individual bid b and bid collection B ex-
plicitly using our hyperplane notation. Using our explicit expression for F ij

b in Equation (G.1),
it is straightforward that

Hb =
⋃

i,j∈I

H(r; i, j; ti
tj
). (G.2)
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Note that the facet F ij
b of prices at which b is indifferent between goods i and j is not nec-

essarily a facet of Hb, as it is subdivided by additional hyperplanes of Hb when n ≥ 4; and
conversely, not all facets of Hb are contained in the sets F ij

b . The weighted HIP (HB,wB) of
a bid collection can be constructed by initially letting HB =

⋃
b∈BHb and wB =

∑
b∈Bwb. We

then remove from HB all hyperplanes containing only zero-weighted facets, to ensure parsi-
mony. This construction mirrors that of LB in Appendix C.

We conclude with two technical observations about HIPs that we will use below.

OBSERVATION G.3: Let H be a HIP. For any point p ∈ P , there exists a sufficiently small ε
such that every hyperplane H ⊆ H either contains p or does not intersect Nε(p), the ε-
neighbourhood of p.

LEMMA G.4: Let G be an (n− 2)-dimensional face of HIP H.
(i) If G is contained in two hyperplanes H(p; i, j; si

sj
) and H(p;k, l; sk

sl
) of H with distinct

i, j, k, l ∈ [n]0, then G is not contained in any further hyperplane H of H.
(ii) If G is contained in three hyperplanes H(p; i, j; si

sj
), H(p; i, k; si

sk
) and H(p;k, j; sk

sj
) of

H with distinct i, j, k ∈ [n], then G is not contained in any further hyperplane H of H.
(iii) If G is contained in two hyperplanes H(p; i,0; 1) and H(p; j,0; 1), then G is also con-

tained in all hyperplanes of H of the form H(p; i, j; a
b
), and not contained in any further

hyperplane H of H.

PROOF: Without loss of generality, let p ∈ relint(G). Write an additional hyperplane of H
passing through p as H =H(p;x, y; tx

ty
) with x > y.

Consider statement (i). First, if x, y /∈ {i, j, k, l}, then G contains point p+ δex but H does
not, so G is not contained in H . Second, suppose x= i. Allow y to be any good in [n]0 \ {i},
but observe that if y = j then the case tx

ty
= ti

tj
= si

sj
means that H is identical to one of the

existing facets containing G, so exclude that case. Then p+ δ(sje
i + sie

j) lies in G but not in
H , for sufficiently small δ > 0 (note that i and j cannot both be 0).

Statement (ii) is proved analogously with the same two possibilities for H using respectively
points p+ δex and p+ δ( 1

si
ei + 1

sj
ej + 1

sk
ek).

Finally, consider statement (iii). H(p; i,0; 1)∩H(p; j,0; 1)⊆H(p; i, j; a
b
) is immediate for

any a
b
∈QS , so any hyperplanes H(p; i, j; a

b
) in H contain G. The argument that H(p;x, y; a

b
)

does not contain G if {x, y} ̸= {i, j} is analogous to the proof of Part (i). Q.E.D.

G.2. Constructing the bid collection

Let v :X → R be a concave substitutes valuation for n goods with finite domain X ⊊ X .
We now construct the corresponding bid collection B. Appendix G.3 then proves DB =Dv .

The bounding box. Define a bounding box (or cube) [P] := {p ∈ P | Ci ≤ pi ≤ Ci,∀i ∈
[n]}, choosing boundary values (Ci,Ci)i∈[n] so that the interior of the box intersects all faces
of Hv . We call the points {x ∈ [P] | xi = Ci} and {x ∈ [P] | xi = Ci} the lower and upper
i-boundaries of the box. Let [Lv], [Hv] be the union of respectively Lv , Hv with the facets of
the box extended to hyperplanes. For any facet F of Lv or Hv , [F ] is the intersection of F with
[P]. As in Section 3.3 and Appendix A, we use the vertices of [Lv] to define the roots of our
bids. Vertices of Lv in the interior of the bounding box lead to regular bids (interested in all
goods). If a vertex lies on a lower i-boundary, the corresponding bid is not interested in good i
and we set its ith root entry to ri =−∞. If a vertex lies on any upper boundary, the bid is not
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interested in the null good 0, and we set ri =−∞. All other root entries are set to correspond to
the vertex’s entries. We therefore record the lower i-boundaries of the bounding box on which
point p ∈ [P] lies, as well as whether it lies on any upper boundaries, by defining:

I(p) := {k ∈ [n]0 | pk >Ck, or k = 0∧ (∀l ∈ [n] : pl <Cl)}.

If p lies in the interior of [P], for instance, we have I(p) = [n]0. Define τ : [P] → R by
τ(p)i = pi if i ∈ I(p) (recalling that p0 = 0) and τ(p)i =−∞ if i ∈ [n]0 \ I(p). This function
fixes prices of goods in I(p), reduces the prices of goods not in I(p) to −∞, and records
whether 0 ∈ I(p). It is clearly injective, and so invertible on its image. Note that bids in its
image which are not interested in good 0 are normalised in a different way from that used in
the body text (see Lemma 2.2 and following paragraphs).

Orientations and slope vectors. Fix some S ∈ N so that the (rational) slopes of all hyper-
planes in Hv are contained in QS := {a

b
| 1≤ a, b≤ S}. We will refer to this value S throughout

Appendices G.2 and G.3. The smallest and largest slopes in QS are called extremal. We also
define two functions ηχ(a

b
) with χ ∈ {−1,1} on the set of slopes QS \ {Sχ}, such that η−1(a

b
)

is the next-smaller and η1(a
b
) is the next-larger slope for a

b
∈ QS .58 An orientation at prices

p ∈ [P] is an ordered pair (i, j) of distinct goods i, j ∈ I(p). We now define slope vector(s) for
orientation (i, j) at p. If 0 ∈ {i, j}, then the (unique) slope vector for (i, j) at p consists of the
vector s ∈ T with sk = 1 for k ∈ I(p) and sk = 0 for k ∈ [n] \ I(p). If 0 /∈ {i, j}, then the set
S of slope vectors for (i, j) at p consists of the vectors s ∈ T whose positive entries are those
that are indexed by I(p)∪ {0} and that satisfy sk

sl
∈QS for all k, l ∈ I(p).

Creating the bid collection B. First we consider each vertex p of [Lv] with |I(p)| ≥ 2. Fix
such a vertex p and the orientation (i, j) at p with the two largest goods i > j in I(p). For
every slope vector s for (i, j) at p, add bid (τ(p);s;m) to B. The bid’s multiplicity m is the
value mij(p;s) of the multiplicity function mij that will be defined in Appendix G.2.2 below.
The multiplicity function computes the weighted sum of weights of certain facets containing p
in the hyperplane H(p; i, j; si

sj
). These facets overlap with ‘sliver regions’ of this hyperplane,

which are introduced in Appendix G.2.1. Corollary G.18 in Appendix G.3 shows that mij is
integral, so the multiplicities of the bids we construct are well-defined. To avoid redundancy,
we only add bids for which mij(p;s) ̸= 0. As we will show later (xx), this holds only if Lv

contains a facet with normal skel − sle
l that meets p, for all k, l ∈ [n].

Once we have considered all vertices of [Lv] with |I(p)| ≥ 2, we add a single-minded bid
to B for each good i ∈ [n]. Fix generic prices p so that Dv(p) = {x} and DB(p) = {y}. For
each good i ∈ [n], we add to B the bid (r;ei;xi − yi) interested only in good i, where the root
r ∈R satisfies ri = 0 and rk =−∞ for k ∈ [n]0 \ {i}.

Our procedure to compute B is formally stated in Algorithm 1. As a final step one can re-
normalise these bids as in the body text (see Lemma 2.2 and the following paragraphs) but we
will use the normalisation provided by Algorithm 1 throughout this appendix.

G.2.1. Sliver regions

Suppose we wish to add a bid b for vertex p, orientation (i, j) and slope vector s, as de-
scribed in Algorithm 1. In order to determine its multiplicity m, we consider the weights of

58The next-smaller slope in QS for a
b

is the largest fraction σ ∈QS with σ < a
b

, and likewise for the next-larger
slope. Note that QS does not contain a next-smaller or next-larger slope if a

b
= S−1 or a

b
= S, respectively, and the

functions ηχ are not defined for these slopes.
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Algorithm 1 Constructing the bid collection B.

1: Initialise B = ∅.
2: for every vertex p of [Lv] with |I(p)| ≥ 2 do
3: Fix orientation (i, j) with the two largest goods i > j ∈ I(p).
4: for every slope vector s for (i, j) at p do
5: Add bid b= (τ(p);s;mij

v (p;s)) to B if mij
v (p;s) ̸= 0.

6: Fix generic prices p ∈ P such that Dv(p) = {x} and DB(p) = {y}.
7: for every good i ∈ [n] do
8: Add bid b= (r,ei;xi − yi) to B with ri = 0 and rk =−∞ for all k ∈ [n]0 \ {i}.
9: return B.

carefully selected facets in H := H(p; i, j; si
sj
) meeting at p. As there are potentially many

facets in H meeting at p and only a subset of these are considered when computing m, we now
systematically define ‘sliver regions’ of H around p so that every facet of interest intersects
(n− 1)-dimensionally with at least one of these slivers. We will see in Lemma G.11 that any
two facets overlapping with the same sliver region have the same weight. This allows us to
associate each sliver region with the weight of its overlapping facets. In Appendix G.2.2, we
will formally define the multiplicity m as the signed sum of the weights of the sliver regions in
H around p.

Let p be an arbitrary point in [P] and (i, j) be an orientation at p with i > 0. For every slope
vector s for (i, j) at p and every set J ⊆ I(p) \ {i, j}, we define a corresponding sliver region
Rij(p;s;J) around p contained in H(p; i, j; si

sj
) as follows.

DEFINITION G.5: Fix a point p ∈ [P], orientation (i, j) at p with i > 0, slope vector s
for (i, j) at p, set J ⊆ I(p) \ {i, j}, and ε > 0 such that Observation G.3 holds. For each
k ∈ [n]0 \ {i, j}, define

Qkj(p;s;J) =



H+(p;k, j; 1
S
) if k /∈ I(p) and k ̸= 0,

H−χJ
0 (p; 0, j; 1) if k = 0,

H−χJ
k (p;k,0; 1) if k ∈ I(p) \ {0} and j = 0,

H−χJ
k (p;k, j; sk

sj
) if k ∈ I(p) \ {0} and sk

sj
= SχJ

0k ,

H−χJ
k (p;k, j; sk

sj
)∩HχJ

k (p;k, j;ηχJ
0k( sk

sj
)) else.

(G.3)
and the sliver region

Rij(p;s;J) = [P]∩Nε(p)∩H(p; i, j; si
sj
)∩

⋂
k∈[n]0\{i,j}

Qkj(p;s;J). (G.4)

A sliver region with 0 /∈ {i, j} is extremal if sk
sj

= SχJ
0k for every k ∈ I(p) \ {i, j}.

To understand the intuition of this construction, suppose we include a bid b = (r;s;m)
(where r = τ(p) for some p ∈ [P]) in an existing set of bids B, and consider the effect this will
have on the weights of facets in HB lying in H(p; i, j; si

sj
) where i, j ∈ I = I(p). As we showed

in and just below Equation (G.1), it will provide an additional weight of mgcd(si, sj) on any
facet with (n− 1)-dimensional intersection with (and so contained in) F ij

b =H(p; i, j; si
sj
) ∩
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FIGURE G.2.—An illustration of sliver regions contained in a plane in a setting with n = 3 goods when j = 0
and when 0 /∈ {i, j}. (a) Example with (i, j) = (3,0). The local neighbourhood of p in the plane with orientation
(3,0) is partitioned into 4 sliver regions R30(p;s;J) by the planes normal to e1 and e2 (the planes H(p;k,0; 1)
for k = 1,2). They are labelled by the corresponding set J . (b) Example with (i, j) = (3,2) and S = 2. The local
neighbourhood of p in a plane with orientation (3,2) and slope 1 is partitioned into 8 sliver regions R1, . . . ,R8 by
the ‘horizontal’ plane normal to e2 and the three planes with orientation (1,2) and slopes QS = { 1

2
,1,2}.

⋂
k∈I\{i,j}H

+(p;k, j; sk
sj
). By construction, the sliver region Rij(p;s;∅) intersects (n − 1)-

dimensionally with F ij
b . However, other bids already in B will also introduce weights on facets

corresponding in the same way to their own root and trade-offs, and these facets may overlap
with those of b. The multiplicities of these bids will be tuned so that the weights of the other
facets meeting p are correct. So, to find the correct multiplicity for b, we need to take a signed
sum of weights of facets containing p—considering whether they are on the other side of the
hyperplanes bounding F ij

b . So for each k ∈ I(p), inclusion of k ∈ J denotes whether we have
swapped to the other side of the hyperplane bounding F ij

b with orientation (k, j).
However, because there may be multiple hyperplanes with orientation (k, j), we must not go

“too far” on either side of these hyperplanes. Consider q ∈H(p; i, j; si
sj
). Whether q is in the

positive or negative half-space defined by H(p;k, j; sk
sj
) depends on whether sk(qk − pk) ≥

sj(qj − pj) or sk(qk − pk)≤ sj(qj − pj). And, for generic q, this depends on whether (qk−pk)

(qj−pj)

is greater than or less than sk
sj

; but note that the way in which the latter inequalities correspond
with the former, depends on the sign of qj − pj , and so on whether q ∈ H+(p; 0, j; 1). But
moreover, if (qk−pk)

(qj−pj)
strays too far from equality with sk

sj
then q will be on the other side of

another hyperplane with orientation (i, j); this happens whenever (qk−pk)

(qj−pj)
crosses the threshold

of any σ ∈ QS . So we must specify that q lies on the correct side of the next hyperplane
along, with respect to the slopes possible, that is, those in QS . That is what the fifth form for
Qkj(p;s;J) achieves.

Figure G.2 illustrates the sliver regions for three goods when I(p) = {0,2,3} in both the
cases j = 0 and j > 0. Figure G.2 (left) shows the case of j = 0: here s is uniquely defined
and S is not relevant. H is partitioned by one hyperplane of orientation (k,0) for every k ∈
[n]0 \ {i, j}. It follows for every sliver region that the Qkj consist of the single half-space
H−(p;k,0; 1) or H+(p;k,0; 1); it is the positive half-space when k /∈ I(p). Thus the sliver
regions R30(p;s;J) are the four regions of Figure G.2 (left), where they are labelled with the
corresponding set J .
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When j > 0, and S ≥ 2, H is partitioned by multiple hyperplanes of the same orientation
(k, j) (with k ̸= 0) and different slopes in QS . And not all sliver regions are extremal. In
the example of Figure G.2 (right), where S = 2, (i, j) = (3,2) and s3

s2
= 1 (so H has slope

1), the extremal sliver regions are the regions labelled R1, R4, R5 and R8. Region R5 is
identified by pair ((2,1,1),∅) and thus can be written as R32(p; (2,1,1);∅). Region R4 is
identified by pair ((1,2,2),{0}), region R1 by pair ((2,1,1),{0,1})), and region R8 by pair
((1,2,2),{1}). The regions labelled R2,R3,R6 and R7 are not extremal, and are each iden-
tified by two pairs. The sliver region R2, for instance, can be written as R32(p; (2,1,1);{0})
and R32(p; (1,1,1);{0,1}); and sliver region R7 can be written as R32(p; (1,1,1);{1}) and
R32(p; (1,2,2);∅).

We now develop important properties of sliver regions analytically. The construction of the
sets Qkj(p;s, J) and the sliver regions allows us to make the following three observations.

OBSERVATION G.6: For any k ∈ I(p), we have Qkj(p;s;J)∩H(p;k, j; sk
sj
) =H(p;k, j; sk

sj
).

OBSERVATION G.7: For any prices p and slopes s, the subset relationship Rij(p;s;J) ⊆
H(p; i, j; si

sj
)∩

⋂
k∈I(p)\{i,j}H

+(p; i, k; sk
sj
) holds if and only if J = ∅.

OBSERVATION G.8: Suppose (i, j) is an orientation with 0 /∈ {i, j}. For any k ∈ I(p) \
{0, i, j} with sk

sj
̸= SχJ

0k , we have

Rij(p;s;J) =

{
Rij(p;s′;J \ {k}) if k ∈ J,

Rij(p;s′;J ∪ {k}) if k /∈ J,

where s′ is the slope vector for (i, j) at p with s′k
s′j

= ηχJ
0k( sk

sj
) and s′l

s′j
= sl

sj
for all l ∈ I(p) \

{j, k}.

From Observation G.8 we can conclude:

COROLLARY G.9: A sliver region is extremal if and only if it is identified by a single pair
(s, J). A non-extremal sliver region is identified by multiple pairs (s, J), and the number of
identifying pairs with even and odd set cardinality is the same.

LEMMA G.10: Rij(p;s;J) is (n− 1)-dimensional for any p ∈ [P], orientation (i, j) at p
with i > 0, slope vector s for (i, j) at p, and J ⊆ I(p) \ {i, j}. If j ̸= 0 then Rij(p;s;J) and
Rji(p;s;J) have (n− 1)-dimensional intersection.

PROOF: Fix p ∈ [P] and suppose first that ε > 0 is such that ε < pk − Ck for all k ∈ [n]

whenever this is greater than 0, and similarly ε < Ck − pk for all k ∈ [n] whenever this is
greater than 0. Fix infinitesimal δ > 0 such that δ < ε

2nS
. We will use δ to construct a point

q ∈ [P] that lies in Rij(p;s;J), and also in Rji(p;s;J) when j ̸= 0. Moreover, we see that
it lies in the interior of every bounding half-space intersecting to define these sliver region(s),
apart from Hij(p;s;J), and thus so does any point in an infinitesimal neighbourhood of q in
Hij(p;s;J). This demonstrates that the sliver region, and where relevant the intersection, has
dimension (n− 1).

Take the case 0 /∈ {i, j}. First, set qi = pi + χJ
0

δ
si

and qj = pj + χJ
0

δ
sj

. This ensures that

q ∈H(p; i, j; si
sj
) and that q lies in the interiors of H−χJ

0 (p; 0, i; 1) and H−χJ
0 (p; 0, j; 1).
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Second, for any 0 ̸= k /∈ I(p), let qk = pk +2Sδ, which ensures that q lies in the interiors of
Qkj(p;s;J) =H+(p;k, j; 1

S
) and Qki(p;s;J) =H+(p;k, i; 1

S
).

Third, for any k ∈ I(p) \ {0, i, j} we let qk = pk + (χJ
0 − δχJ

k )
δ
sk

. This ensures that q

lies in the interior of H−χJ
k (p;k, j; sk

sj
) and H−χJ

k (p;k, i; sk
si
). Moreover, q lies in the inte-

rior of HχJ
k (p;k, j;ηχJ

0k( sk
sj
)) if sk

sj
̸= SχJ

0k , and in the interior of HχJ
k (p;k, i;ηχJ

0k( sk
si
)) if

sk
si

̸= SχJ
0k . This fully specifies q, and shows that it lies in the interior of Qkj(p;s;J) and

Qki(p;s;J) for all k ∈ [n]0 \ {i, j}.
Finally, note that q ∈Nε(p) by definition of δ. To demonstrate that q ∈ [P], first note that

by definition of ε, for all k ∈ [n] we have Ck < pk =⇒ Ck < qk and pk < Ck =⇒ qi < Ck.
If pk =Ck for some k ∈ [n] then k /∈ I(p) (and so in particular k ̸= i, j) and so qk > pk =Ck.
And if pk = Ck for any k ∈ [n] then k ∈ I(p), 0 /∈ I(p) and so qk < pk = Ck. So indeed
q ∈ [P], which completes this case.

Now turn to the case j = 0. Now the slope vector s is unique with sk = 1 for all k ∈ I(p)∪
{0}. Let qi = pi so that q ∈H(p; i,0; 1), and let qk = pk − δχJ

k for k ∈ [n] \ {i}. If k /∈ I(p)
then k /∈ J so q lies in the interior of H+(p;k,0; 1) =Qk0(p;s;J). And if k ∈ I(p) \ {i,0}
then q ∈H−χJ

k (p;k,0; 1) = Qk0(p;s;J). This fully specifies q, and shows that it lies in the
interior of Qkj(p;s;J) and Qki(p;s;J) for all k ∈ [n]0 \ {i, j}.

Again, q ∈Nε(p) by definition of δ. Being in the case j = 0 implies that 0 ∈ I(p) and so
pk < Ck for all k ∈ [n]. So, q ∈Nε(p) and the definition of ε is sufficient for qk < Ck for all
k ∈ [n]. We similarly have Ck < pk =⇒ Ck < qk. If pk = Ck for some k ∈ [n] then k /∈ I(p)
(and so in particular k ̸= i) and so qk > pk =Ck. So indeed q ∈ [P], which completes this case.

It was more convenient to prove this result using assumptions on the value of ε defining the
sliver regions; observe that the result still holds if we relax these assumptions, as we will simply
get larger sets containing the same (n− 1)-dimensional neighbourhoods of q. Q.E.D.

G.2.2. Computing multiplicities

We now introduce the multiplicity function, which maps any combination of a point, ori-
entation and slope vector to an integer. This definition is more general than required for the
algorithm constructing the bid collection B, and will be used in full generality when we prove
Theorem 3.1. Throughout this section, let (H,w) be a balanced weighted HIP whose hyper-
planes have slopes in QS .

Fix some point p ∈ P , orientation (i, j) at p with i > 0, and slope vector s for (i, j) at p.
We assume that H :=H(p; i, j; si

sj
) is a hyperplane in H by temporarily adding H as a dummy

hyperplane with zero-weighted facets if necessary. Each sliver region Rij(p;s;J) around p
in H has (n − 1)-dimensional intersection with one or more facets of H contained in H .
Lemma G.11 tells us that all such facets have the same weight, and we denote this weight
by wij(p;s;J). We also introduce the shorthand wij(p;J) := wij(p;s;J) when j = 0, as the
slope vector at p for (i,0) is unique.

LEMMA G.11: Fix p ∈ [P], orientation (i, j) at p with i > 0, and slope vector s for (i, j)
at p. All facets that have (n− 1)-dimensional intersection with sliver region R :=Rij(p;s;J)
have the same weight wij(p;s;J).

PROOF: Let F and F ′ be two adjacent facets of H contained in hyperplane H :=
H(p; i, j; si

sj
) that intersect full-dimensionally with R. Suppose we can show that F and F ′

are not separated by any hyperplanes of orientation (k, j) with k ∈ [n]0 \ {j}. Then F and
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F ′ are also not separated by any hyperplanes of orientation (k, i) with k ∈ [n]0 \ {i}, as
H+(p;k, j;σ) ∩H =H+(p;k, i;σ

sj
si
) ∩H and H−(p;k, j;σ) ∩H =H−(p;k, i;σ

sj
si
) ∩H .

Hence, the face G of H separating F and F ′ is contained in a hyperplane H ′ of orientation
(k, l) with {k, l} ∩ {i, j} = ∅. By Lemma G.4, G is contained in no other hyperplanes of H.
Since H is balanced around G (cf. Observation G.1) and the normal vectors to H and H ′ are
linearly independent, it follows that w(F ) =w(F ′).

It remains to show that hyperplane H ′ :=H(p;k, j;σ) does not separate any two points in
R if k ∈ [n]0 and σ is any slope in QS . Fix q,q′ ∈ relintR.

Suppose first that j = 0 or k = 0. Then, as there is only one hyperplane with orientation
(k,0) or respectively (0, j) passing through p, the assumption that q,q′ ∈ relintR implies that
they lie on the same side of H ′. So we assume from here that j, k > 0.

Next suppose that k = i and σ ̸= si
sj

. As q,q′ ∈ H , we have (qi − pi) =
sj
si
(qj − pj) and

(q′i − pi) =
sj
si
(q′j − pj). Suppose q and q′ are separated by H ′ and without loss of generality

that σ(qi − pi)< (qj − pj) and σ(q′i − pi)> (q′j − pj). Hence, sj
si
σ(qj − pj)< (qj − pj) and

sj
si
σ(q′j − pj)> (q′j − pj). These equations together imply that qj − pj and q′j − pj do not have

the same sign, that is, q and q′ lie in different half-spaces of H(p; 0, j; 1). But R⊆Q0j(p;s;J)
which is either H+(p; 0, j; 1) or H−(p; 0, j; 1), so this contradicts our assumption that q and
q′ both lie in R.

Now we consider k /∈ I(p). Recall that k /∈ I(p) means that pk =Ck, and so R⊆ [P] means
that qk, q′k > pk. Now q ∈Qkj(p;s;J) =H+(p;k, j; 1

S
) implies qk − pk ≥ S(qj − pj); since

qk − pk > 0 we can re-write this as qj−pj
qk−pk

≤ 1
S

. It follows by definition of S that qj−pj
qk−pk

≤ σ for
any σ ∈QS , and so that q ∈H+(p;k, j;σ). As the same holds for q′, the points q,q′ cannot
be separated by H ′.

Finally, consider k ∈ I(p) \ {i, j,0} and suppose that 0, k ∈ J . If σ ≤ sk
sj

, then q,q′ ∈
H−(p;k, j; sk

sj
) ∩H−(p; 0, j; 1)⊆H−(p;k, j;σ). If σ > sk

sj
, then sk

sj
̸= S = SχJ

0k and so also
q,q′ ∈H+(p;k, j;η+1( sk

sj
)) ∩H−(p; 0, j; 1) ⊆H+(p;k, j;σ). So q,q′ are not separated by

H ′. The other possibilities for inclusion of 0, k ∈ J may be seen similarly. Q.E.D.

COROLLARY G.12: Rij(p;s;J) and Rji(p;s;J) have the same weight wij(p;s;J) =
wji(p;s;J) if 0 /∈ {i, j}.

PROOF: Lemma G.10 tells us there is some facet F that has (n−1)-dimensional intersection
with both sliver regions, so the claim follows by Lemma G.11. Q.E.D.

The multiplicity function introduced in Definition G.13 computes a weighted sum of the
sliver region weights. Corollary G.18 in Appendix G.3 shows that this function is integral,
ensuring that the multiplicities of the bids in B are well-defined.

DEFINITION G.13: For any point p ∈ [P], orientation (i, j) at p with i > 0, and slope vector
s for (i, j) at p, the multiplicity (w.r.t. any HIP (H,w)) is given by

mij(p;s) :=
1

gcd(si, sj)

∑
J⊆I(p)\{i,j}

(−1)|J|wij(p;s;J). (G.5)

We also refer to the multiplicity functions with respect to the weighted HIPs (Hv,wv) and
(HB′ ,wB′) for any bid collection B′ as mij

v and mij
B′ .



62

Note that mij(p;s) = 0 if the LIP L defining H does not contain a facet in H(p; i, j; si
sj
)

at p, as in that case all facets of H at p have weight zero. The weight function of (HB′ ,wB′ )
satisfieswB′ =

∑
b∈B′ wb, (see Section 3.1 and Appendix C) so we have mij

B′ =
∑

b∈B′ m
ij
b .

Recall that m0j(p; ·) has not been defined; with this exception, the order of i and j does not
matter in mij , as Corollary G.12 implies that:

OBSERVATION G.14: For any p ∈ [P] and any distinct i, j ∈ I(p)\{0}, we have mij(p; ·) =
mji(p; ·).

G.3. Showing correctness

In Appendix G.3.1, we prove (Hv,wv) = (HB,wB) for the bid collection B constructed in
Appendix G.2. By Proposition G.2, this implies that the difference in demand as we move from
one price to another is the same for Dv and DB. Appendix G.3.2 then concludes the proof of
Theorem 3.1 by showing that Dv =DB, and arguing that B is the only bid collection (up to
normalisation) satisfying this equality. In order to prove these results, we first establish two
key properties of the multiplicity functions mij

v and mij
B . Lemma G.15 characterises mij

B , and
Lemma G.16 shows that the two multiplicity functions coincide.

LEMMA G.15: Fix prices p ∈ [P] and bid b= (r; t;m) ∈ B.
i) For any orientation (i,0) at p, we have mi0

b (p) =m if r = τ(p) and mi0
b (p) = 0 other-

wise.
ii) For any orientation (i, j) with 0 /∈ {i, j} at p and slope vector s for (i, j) at p, we have

mij
b (p;s) =m if r = τ(p) and s= t, and mij

b (p;s) = 0 otherwise.

LEMMA G.16: For any p ∈ [P] with |I(p)| ≥ 2, orientation (i, j) at p with i > 0, and slope
vector s for (i, j) at p, we have mij

v (p;s) =mij
B (p;s).

In order to prove Lemmas G.15 and G.16, we first develop properties of the multiplicity
function in technical Lemmas G.17, G.19 and G.20. Throughout this section, let (H,w) be
a balanced weighted HIP whose hyperplanes have slopes in QS . Note that Observation G.8
implies that the multiplicity function mij(p;s) defined in Definition G.13 can be written, for
any p at which I(p) contains at least three distinct goods and any k ∈ I(p) \ {i, j}, as

mij(p;s) =
1

gcd(si, sj)

∑
J⊆I(p)\{i,j,k}

(−1)|J| [wij(p;s;J)−wij(p;s;J ∪ {k})
]
. (G.6)

LEMMA G.17: Fix a point p ∈ P and two orientations (i, j) and (k, l) with 0 /∈ {i, j, k, l}.
For any slope vector s for (i, j) at p, we have mij(p;s) =mkl(p;s).

PROOF: The claim is immediate if I(p) = {i, j}, so suppose I(p) contains three distinct
non-zero goods i, j and k. We prove mij(p;s) =mkj(p;s), which implies the lemma by Ob-
servation G.14. Define Hij :=H(p; i, j; si

sj
), Hkj :=H(p;k, j; sk

sj
) and Hik :=H(p; i, k; si

sk
),

and assume that these hyperplanes are in H by adding dummy hyperplanes with zero-weighted
facets if necessary. Using Equation (G.6), we prove mij(p;s) = mkj(p;s) by showing, for
every set J ⊆ I \ {i, j, k}, that

wij(p;s;J)−wij(p;s;J ∪ {k})
gcd(si, sj)

=
wkj(p;s;J)−wkj(p;s;J ∪ {i})

gcd(sk, sj)
. (G.7)
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Fix J ⊆ I \ {i, j, k}. By Observation G.6, we have Qij(p;s;J) ∩ Hij = Hij and
Qkj(p;s;J)∩Hkj =Hkj . Writing out sliver regions Rij(p;s;J) and Rkj(p;s;J) according
to Definition G.5, we see that Rij(p;s;J)∩Hkj =Rkj(p;s;J)∩Hij . Let R :=Rij(p;s;J)∩
Hkj =Rkj(p;s;J)∩Hij . Lemma G.10 implies that R is (n−2)-dimensional and contained in
Hij∩Hkj . Let G⊆Hij∩Hkj be a face of H that has (n−2)-dimensional intersection with R.
By Lemma G.4 (part 2), all facets F of H that contain G lie in Hij , Hik or Hkj . Each of these
hyperplanes contains exactly two such facets, one on either side of G. By Observation G.6,
again, Qkj(p;s;J)∩Hkj =Qkj(p;s;J ∪ {k})∩Hkj ; and Qlj(p;s;J) =Qlj(p;s;J ∪ {k})
for all l ∈ [n]0 \ {i, j, k}; so Rij(p;s;J ∪ {k}) ∩ Hkj = Rij(p;s;J) ∩ Hkj = R. Hence,
one of the facets in Hij containing G has (n− 1)-dimensional intersection with Rij(p;s;J)
and so weight wij(p;s;J), while the other facet has (n − 1)-dimensional intersection with
Rij(p;s;J ∪ {k}) and so weight wij(p;s;J ∪ {k}). Analogous statements hold for Hkj .
Moreover, let w1 and w2 denote the weights of the facets in Hik on either side of G. Choos-
ing a consistent orientation around G, the balancing property of (H,w) implies the following
vector equation whose jth component is Equation (G.7).

0=
wij(p;s;J)−wij(p;s;J ∪ {k})

gcd(si, sj)
(sie

i − sje
j)

+
wkj(p;s;J)−wkj(p;s;J ∪ {i})

gcd(sk, sj)
(sje

j − ske
k)

+
w1 −w2

gcd(si, sk)
(ske

k − sie
i).

Q.E.D.

COROLLARY G.18: For any prices p ∈ [P], orientation (i, j) at p with i > 0, and slope
vector s for (i, j) at p, we have mij(p;s) ∈ Z.

PROOF: If j = 0, then gcd(si, sj) = 1 (as sj = s0 = 1 by definition), so integrality of
mij(p;s) follows immediately from Definition G.13 and the integrality of facet weights. So
suppose i, j > 0. Fix p and s, apply Lemma G.17 to see that mij(p;s) =mik(p;s) for all k ∈
I(p)\{0, i}, and write mij(p;s) = a

b
with co-prime a, b ∈ Z. For any k ∈ I(p)\{0, i}, we ob-

serve by Definition G.13 that gcd(si, sk)mik(p;s) = gcd(si, sk)
a
b

is integral. So b | gcd(si, sk)
for all k ∈ I(p) \ {0, i}. It follows that b | sk for all k ∈ I(p) \ {0}. But as sl = 0 for all
l ∈ [n] \ I(p) and s ∈ T , so the non-zero entries of s indexed by [n] are co-prime, we have
b= 1 and so mij(p;s) = a ∈ Z. Q.E.D.

LEMMA G.19: Fix a point p ∈ P with 0 ∈ I(p). For any distinct i, j ∈ I(p) \ {0}, we have
mi0(p) =

∑
s∈S sim

ij(p;s), where S is the set of all slope vectors for (i, j) at p.

PROOF: The claim is vacuous if |I(p)|= 2, so suppose I(p) \ {0} contains distinct i, j. For
any slope σ ∈QS and set J ⊆ I(p) \ {i, j}, define the extremal slope vector s(σ,J) for (i, j)
at p as the vector s ∈ T satisfying, for every k ∈ I(p) \ {0, j},

sk
sj

=

{
σ if k = i,

SχJ
0k otherwise.
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Note that s(σ,J) is a primitive vector, but coordinates si(σ,J) and sj(σ,J) need not be co-
prime. Clearly, any extremal sliver region is identified by an extremal slope vector (cf. Corol-
lary G.9).

First we show∑
s∈S

J⊆I(p)\{i,j}

si
gcd(si,sj)

(−1)|J|wij(p;s;J) =
∑
σ∈QS

J⊆I(p)\{i,j}

si(σ,J)

gcd(si(σ,J),sj(σ,J))
(−1)|J|wij(p;s(σ,J);J). (G.8)

We first rearrange the sum on the left-hand side of Equation (G.8) by grouping together
all terms with pairs (s, J) identifying the same sliver region. By Corollary G.9, each such
sliver region is either extremal and thus associated with a single identifying set (s, J) or it is
identified by the same number of pairs (s, J) with even and odd cardinality of set J . Moreover,
if (s, J) and (s′, J ′) define the same sliver region then s′i

s′j
= si

sj
(by Definition G.5) and so

s′i
gcd(s′i,s

′
j)

= si
gcd(si,sj)

. It follows that the terms corresponding to non-extremal regions cancel
out, and we are left with the weighted sum of the weights of all extremal sliver regions around
p in H , the right-hand side of Equation (G.8).

We now prove, for any J ⊆ I(p) \ {i, j,0}, that

wi0(p;J)−wi0(p;J ∪ {j})

=
∑
σ∈QS

si(σ,J)

gcd(si(σ,J),sj(σ,J))
[wij(p;s(σ,J);J)−wij(p;s(σ,J ∪ {0});J ∪ {0})]. (G.9)

To show this, we proceed similarly to the proof of Lemma G.17. Fix J ⊆ I(p) \ {i, j,0} and
define the hyperplanes Hi0 :=H(p; i,0; 1) and Hj0 :=H(p; j,0; 1). We can assume that these
hyperplanes exist in H by adding dummy hyperplanes with zero-weighted facets, if necessary.
From Definition G.5, it follows that R := Ri0(p;J) ∩Hj0 = Rj0(p;J) ∩Hi0 ⊆Hi0 ∩Hj0,
and R is (n− 2)-dimensional. Let G be an (n− 2)-face of H that has (n− 2)-dimensional
intersection with R. By Lemma G.4, a facet of H contains G only if it lies in Hi0,Hj0 or in
a hyperplane H(p; i, j;σ) for some σ ∈QS . Each such hyperplane contains two facets with G
as a bounding face, one on either side. Ri0(p;J) and Ri0(p;J ∪ {j}) both contain R and lie
on either side of G, as we can see using the same methods as in the proof of Lemma G.17. So
they each have (n−1)-dimensional intersection with one of these two facets in Hi0. Hence the
facets have weights wi0(p;J) and wi0(p;J ∪ {j}). An analogous statement holds for Hj0.

We now turn to the hyperplanes with orientation (i, j) containing G. Fix slope σ ∈QS and let
Hij :=H(p; i, j;σ). As above, we assume that Hij ⊆H. Recall that Hij∩Hi0 =Hij∩Hj0 =
Hi0 ∩Hj0. We prove that

R⊆Rij(p;s(σ,J);J)∩Hi0 =Rij(p;s(σ,J ∪ {0});J ∪ {0})∩Hi0. (G.10)

To see the set inclusion in Equation (G.10), fix some q ∈ relintR. For any k ∈ I(p) \ {i, j,0},

q ∈Qk0(p;1;J)∩Hi0 ∩Hj0 =H−χJ
k (p;k,0; 1)∩Hi0 ∩Hj0

=H−χJ
k (p;k, j;SχJ

0k)∩Hi0 ∩Hij

=Qkj(p;s(σ,J);J)∩Hi0 ∩Hij .

Similarly, q ∈ Qk0(p;1;J) ∩ Hi0 ∩ Hj0 = Qkj(p;s(σ,J);J);J) ∩ Hi0 ∩ Hij for any k /∈
I(p)∪ {0}. Finally, q ∈Hj0 ∩Hi0 =Qj0(p;s(σ,J);J)∩Hij ∩Hi0. Observe that q ∈ [P]∩
Nε(p) because q ∈R. Together, this implies q ∈Rij(p;s(σ,J);J)∩Hi0.
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To show the equality in Equation (G.10), first note that, by definition of s, for k ∈ [n]0 \{i, j}
and any J ⊆ I(p) \ {i, j}, the set Qkj(p;s(σ,J ′);J ′) is a single half-space of orientation
(k, j). In the definition of Rij , we intersect the Qkj sets with Hij , and, in Equation (G.10),
additionally with Hi0, but Hij ∩ Hi0 = Hj0 ∩ Hi0. Observe that, for any χ ∈ {0,1}, any
k ∈ I \{i, j,0} and any slope a

b
, we have Hχ(p;k, j; a

b
)∩Hj0 =Hχ(p;k,0; 1)∩Hj0, which is

independent of the slope, while Hχ(p; 0, j; a
b
)∩Hj0 =Hj0, which is independent of χ. We can

conclude that, for every k ∈ [n]0 \ {i, j}, we have Qkj(p;s(σ,J);J)∩Hi0 =Qkj(p;s(σ,J ∪
{0});J ∪ {0}) ∩Hi0. The infinitesimal neighbourhood of p is the same in each case. So we
have demonstrated the equality in Equation (G.10).

Hence, the weights of the facets in Hij =H(p; i, j;σ) on either side of G are wij(p;s(σ,J);J)
and wij(p;s(σ,J ∪ {0});J ∪ {0}). Note that 1

gcd(si(σ,J),sj(σ,J))
(si(σ,J)e

i − sj(σ,J)e
j) is a

primitive vector normal to H(p; i, j;σ). So, choosing a consistent orientation around G, the
balancing property of (H,w) thus implies the following vector equation whose ith component
is Equation (G.9).

0 =[wi0(p;J)−wi0(p;J ∪ {j})]ei − [wj0(p;J)−wj0(p;J ∪ {i})]ej

−
∑
σ∈QS

wij(p;s(σ,J);J)−wij(p;s(σ,J ∪ {0});J ∪ {0})
gcd(si(σ,J), sj(σ,J))

(si(σ,J)e
i − sj(σ,J)e

j).

Finally, by combining Equation (G.6), Equation (G.9) Equation (G.8) and Equation (G.6)
again in turn, we see that

mi0(p) =
∑

J⊆I(p)\{i,j,0}

(−1)|J|[wi0(p;J)−wi0(p;J ∪ {j})]

=
∑

J⊆I(p)\{i,j,0}
σ∈QS

si(σ,J)

gcd(si(σ,J),sj(σ,J))
(−1)|J|[wij(p;s(σ,J);J)−wij(p;s(σ,J ∪ {0});J ∪ {0})]

=
∑

J⊆I(p)\{i,j,0}
s∈S

si
gcd(si,sj)

(−1)|J|[wij(p;s;J)−wij(p;s;J ∪ {0})]

=
∑
s∈S

sim
ij(p;s),

as required. Q.E.D.

LEMMA G.20: Fix point p ∈ [P], orientation (i, j) at p with i > 0, and slope vector s for
(i, j) at p. If mij(p;s) ̸= 0, then [Lv] has a facet in H(p;k, l; si

sj
) with a vertex at p, for all

k, l ∈ I(p).

PROOF: Assume |I(p)| ≥ 2, as otherwise the statement is vacuous. In order to show that p
is a vertex of [Lv], we show that it is the unique point of intersection of facets of Lv and the
bounding box. By definition of I(p), p lies in the lower boundary hyperplane ek · q = Ck for
every k ∈ [n] \ I(p).

If I(p) = {i,0} then j = 0 and mi0(p) ̸= 0 implies that Lv contains a (i,0)-facet F of non-
zero weight meeting p. This facet F and the n − 1 boundary hyperplanes containing p (the
hyperplanes ek · q =Ck for all k ∈ [n] \ {i}) intersect at p, as required.



66

So suppose I(p) ̸= {i,0}. Then if j = 0, there exists k ∈ I(p) \ {i,0}, and by Lemma G.19,
mi0(p) ̸= 0 implies there exists s ∈ T such that mik(p,s) ̸= 0. So we may assume that j > 0.
Now, by Lemma G.17, we have mkl(p;s) =mij(p;s) ̸= 0 for all distinct k, l ∈ I(p)\{i, j,0}.
It follows that H(p;k, l; sk

sl
) contains a facet of Lv meeting p. Set up a system of equations

with (ske
k − sje

j) · (q−p) = 0 for each hyperplane H(p;k, j; sk
sj
) with k ∈ I(p)\{j,0}, and

ek · q = Ck for each boundary hyperplane with k ∈ [n] \ I(p). It is straightforward that this
system has n− 1 equations and rank n− 1.

We now argue that [Lv] has an additional facet or boundary hyperplane meeting p such
that adding its equation to our system increases the rank to n. This will immediately imply
that p is the unique intersection of all these facets and boundary hyperplanes, and so is a
vertex of [Lv], as required. If 0 /∈ I(p), then there exists some k ∈ I(p) \ {0} such that p
lies in the upper boundary hyperplane associated with equation ek · q = Ck, and we are done.
So suppose 0 ∈ I(p). If Lv contains a (k, j)-facet with slope σ ̸= sk

sj
meeting p, for some

k ∈ I(p)\{j}, then we are done. Hence, suppose this is not the case. Lemma G.17 implies that
s is the only slope vector s′ for (i, j) at p with mij(p;s′) ̸= 0. Then mi0(p) = sim

ij(p;s) ̸= 0
by Lemma G.19 and so Lv contains an (i,0)-facet meeting p. Q.E.D.

We are now ready to prove Lemmas G.15 and G.16.

PROOF OF LEMMA G.15: We will argue parts (i) and (ii) together by showing that the state-
ment must hold for any orientation (i, j) at p. Assume that |I(p)| ≥ 2, as otherwise the state-
ment is trivial, and let I = {i ∈ [n]0 | ri >−∞} be the goods in which b is interested. Recall
that by construction of B (Algorithm 1) we know that r = τ(p′) for some p′ ∈ [P], and so
ri >Ci for all i ∈ I ; and ri ≤Ci for all i ∈ [n]; and r0 =−∞ if and only if there exists i ∈ [n]

with ri =Ci; otherwise r0 = 0.
By Definition G.13, we know that mij

b (p;s) ̸= 0 implies that H(p; i, j; si
sj
) contains a non-

0-weighted facet, and so is contained in Hb, for any i, j ∈ I(p). Moreover, the description of
Hb of Equation (G.2) then implies that i, j ∈ I and H(p; i, j; si

sj
) =H(r; i, j; ti

tj
), and therefore

that si
sj

= ti
tj

and ti(ri − pi) = tj(rj − pj).

We will now assume that mij
b (p;s) ̸= 0 for some i, j ∈ I(p) and some slope vector s for

(i, j) at p, and show that this implies that for all k ∈ I(p) \ {j} there exists s′ such that either
mkj

b (p;s′) ̸= 0 or mik
b (p;s′) ̸= 0, with s′ being a slope vector for (k, j) or (i, k) as appropriate.

As just described, this will tell us that I(p)⊆ I and

tk(rk − pk) = tj(rj − pj) for all k ∈ I(p). (G.11)

The claim is immediate if |I(p)| = 2, so suppose |I(p)| > 2. If j = 0, then by Lemma G.19,
for any k ∈ I(p) \ {i,0} ̸= ∅ there exists s′ ∈ S such that mik(p;s′) ̸= 0. So without loss of
generality we may assume j > 0. Then, for all k ∈ I(p) \ {0, j}, we know mkj

b (p;s) ̸= 0 (by
Lemma G.17) and so sk

sj
= tk

tj
(by the preceding paragraph). This uniquely defines s ∈ S given

I(p), so Lemma G.19 also implies mi0
b (p) ̸= 0 if 0 ∈ I(p).

We now show I(p) = I . If 0 ∈ I \I(p), then r0 = 0 and there exists k ∈ I(p) with pk =Ck >
rk, and so tk(rk−pk)< 0. By Equation (G.11), we have tl(rl−pl) = tk(rk−pk)< 0 = t0(r0−
p0) for all l ∈ I(p), and so b strictly prefers the null good to goods i and j at p. Now suppose
0 ̸= l ∈ I \ I(p), which means that rl > Cl = pl. Then tl(rl − pl)> 0. However, if 0 /∈ I(p),
then pk =Ck ≥ rk for some k ∈ I(p); with Equation (G.11) this implies tk(rk−pk)≤ 0 for all
k ∈ I(p). And if 0 ∈ I(p)⊆ I , then Equation (G.11) implies that tk(rk−pk) = t0(r0−p0) = 0
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for all k ∈ I(p). In either case, tl(rl − pl) > 0 ≥ tk(rk − pk) for all k ∈ I(p), and so bid b
strictly prefers good l to either i or j at price p. Each of these cases implies that wij(p;s;J) = 0
for every J ⊆ I(p) \ {i, j} and so that mij

b (p;s) = 0. This contradiction implies that I(p) = I .
Now we show that τ(p) = r. If 0 ∈ I = I(p) then Equation (G.11) directly implies pk = rk

for all k ∈ I . If 0 /∈ I = I(p), then there exists k ∈ I(p) with pk =Ck ≥ rk, and so pl ≥ rl for
all l ∈ I by Equation (G.11); and there exists k′ ∈ I with rk′ =Ck′ ≥ pk′ , and so rl ≥ pl for all
l ∈ I by Equation (G.11); so again pl = rl for all l ∈ I . And if k ∈ [n]0 \ I = [n]0 \ I(p) then
rk =−∞ and pk =Ck. So in both cases we have r = τ(p).

We also have s= t, as sk
sj

= tk
tj

for all k ∈ I = I(p) and s, t are both primitive vectors.
By Equation (G.1) and Observation G.7, the sliver region Rij(p;s;J) is contained in facet

F ij
b of Hb if and only if J = ∅. So wij

b (p;s;J) =mgcd(si, sj) if J = ∅, and is 0 otherwise.
Hence mij

b (p;s) =m. Q.E.D.

PROOF OF LEMMA G.16: Suppose first that j > 0 or I(p) = {i,0} (so j = 0). If p is
not a vertex of [Lv], then the bid collection B contains no bids with root r = τ(p), and so
mij

b (p;s) = 0 for all b ∈ B by Lemma G.15. As mij
B (p,s) =

∑
b∈Bmij

b (p,s) (as stated above
Observation G.14), we have mij

B (p;s) = 0. Lemma G.20 implies mij
v (p;s) = 0, so the claim

follows.
Now suppose p is a vertex of [Lv]. Then, for every slope vector s at p, Algorithm 1 stipulates

that either B contains a single bid with root τ(p), tradeoffs s and multiplicity m=mkl
v (p;s),

where (k, l) is the orientation with the two largest goods in I(p); or B contains no bid with root
τ(p), and tradeoffs s, if this associated multiplicity is zero. If (k, l) ̸= (i, j), we see that k, l≥
j > 0 because j > 0 by assumption, and so Lemma G.17 tells us that mkl

v (p;s) =mij
v (p;s).

Hence Lemma G.15 implies mij
b (p;s) = m = mij

v (p;s). For all other bids b′ ∈ B, we have
mij

b′(p;s) = 0 by Lemma G.15, so mij
B (p;s) =

∑
b∈Bmij(p;s) =mij

v (p;s).
We now turn to the case that j = 0 and |I(p)| ≥ 3. Fix some k ∈ I(p) \ {i,0}. Writing S for

the set of slopes for (i, k) at p, we see that mi0
B (p) =

∑
s∈S sim

ik
B (p;s) =

∑
s∈S sim

ik
v (p;s) =

mi0
v (p). The first and third equalities follow from Lemma G.19, and the second equality holds

due to mik
B (p;s) =mik

v (p;s) for any s ∈ S as shown above. Q.E.D.

G.3.1. Proving the equivalence of the two HIPs

We now show that (Hv,wv) = (HB,wB). Proposition G.26 proves that Hv =HB, and Propo-
sition G.28 then shows that wv(F ) = wB(F ) for every facet F of Hv =HB. In order to prove
this, we first define partial orders for points within a hyperplane, and corresponding slope
vectors, and develop two technical lemmas. Suppose (H,w) is a parsimonious weighted HIP
whose faces all intersect the interior of the bounding box [P].

DEFINITION G.21—Partial Orders: Fix a hyperplane H with orientation (i, j) and slope σ ∈QS .
(i) For any two points p,p′ ∈H , let p ⪯H p′ if and only if either pj > p′j , or pj = p′j and

pk ≤ p′k for all k ∈ [n].
(ii) For any price p, orientation (i, j) at p with 0 /∈ {i, j}, and slope σ ∈ QS , we define a

second partial order on the set Sσ of slope vectors s for (i, j) at p with si
sj

= σ. For any

two such slope vectors s and s′, let s⪯S,σ s′ if and only if sk
sj

≤ s′k
s′j

for all k ∈ I(p).

(iii) We also combine ⪯H and ⪯S,σ to formulate a partial order ⪯H,S on all pairs (p,s) ∈
H ×Sσ: let (p,s)⪯H,S (p′,s′) if and only if either: p⪯H p′ and p ̸= p′; or p= p′ and
s⪯S,σ s′.

For each of these partial orders, we will use ≺ to denote the associated strict partial order.



68

For ⪯H , no specification need be given for coordinate i because, for any two points p,p′

contained in H with orientation (i, j), pj > p′j implies pi > p′i and pj = p′j implies pi = p′i. It is
straightforward to check that ⪯H , ⪯S,σ and ⪯H,S are indeed partial orders, and that (H,⪯H) is
a lattice. We write infH X for the infimum of set X ⊆H with respect to ⪯H . Observe that, for
any two p,p′ ∈H , we have infH{p,p′}= p if pj > p′j , and infH{p,p′} is the usual Euclidean
infimum if pj = p′j .

LEMMA G.22: If F is a facet of H contained in a hyperplane H ⊆H, then infH [F ] ∈ [F ].

PROOF: By definition of [P] we know that [F ] is non-empty and (n− 1)-dimensional. As
facets are closed, and [P] is bounded, we know [F ] is compact, and so it is sufficient to check
that ([F ],⪯H) is a lower semi-lattice (Milgrom and Shannon, 1994, Section 2). So, for any
p,p′ ∈ [F ], we need to establish that q := infH(p,p′) ∈ [F ]. Write (i, j) for the orientation of
H . If pj ̸= p′j , then as observed above q ∈ {p,p′}⊊ [F ]. So assume that pj = p′j , which implies
that qj = pj = p′j , that qi = pi = p′i and that qk =min(pk, p

′
k) for k ∈ [n]. Now, if q /∈ [F ] then

there exists a hyperplane Ĥ = H(p̂;k, l;σ) of H with p,p′ ∈ Ĥ+ \ Ĥ and q ∈ Ĥ− \ Ĥ , so
σpk − pl > σp̂k − p̂l and σp′k − p′l > σp̂k − p̂l > σqk − ql. Note that if p′k ≤ pk and p′l ≤ pl
then qk = min(pk, p

′
k) = p′k and ql = min(pl, p

′
l) = p′l, which contradicts our assumption on

the separating hyperplane. So assume without loss of generality that pk > p′k and pl < p′l. Then
qk = p′k and ql = pl; and so σqk − ql > σp′k − p′l, again contradicting our assumption on the
separating hyperplane. This contradiction implies q ∈ [F ]. Q.E.D.

LEMMA G.23: Let F be a facet of H contained in hyperplane H ⊆H of orientation (i, j)
with i > 0 and slope si

sj
. Then q := infH [F ] is a vertex of [H] and we have i, j ∈ I(q).

Moreover, there exist slope vector s for (i, j) at q and set J ⊆ I(q) \ {i, j} such that
Rij(q;s;J) has (n− 1)-dimensional intersection with [F ], and so w(F ) =wij(q;s;J).

PROOF: By definition of [P], for any facet F we know that [F ] is non-empty and has dimen-
sion (n− 1). By Lemma G.22 we know q ∈ [F ]. Suppose q = λp+ (1− λ)p′ for p,p′ ∈ [F ]
and λ ∈ (0,1). As q is the infimum of [F ], we have qj ≥ pj and qj ≥ p′j . If either of these in-
equalities is strict, then qj > λpj + (1− λ)p′j , a contradiction. So qj = pj = p′j , which implies
(by definition of ⪯H ) that qk ≤ pk and qk ≤ p′k for all k ∈ [n]. Again, if any of these inequal-
ities is strict, we obtain the contradiction qk < λpk + (1− λ)p′k. Hence p= p′ = q, implying
that q is a vertex of [F ].

Now pick a generic point p ∈ relint[F ] ∩ Nε(q). Since p does not lie in any face of [F ],
and q = infH [F ], it follows when j > 0 that qj > pj and qi > pi. When j = 0 we must have
pj = qj = 0 and pi = qi, and so p ∈ relint[F ] implies qk < pk for all k ∈ [n] \ {i}.

As [F ] has (n−1)-dimensional intersection with the interior of [P], we know Ck < pk <Ck

for all k ∈ [n]. So in particular qi ≥ pi > Ci; and qj ≥ pj > Cj if j > 0; so i ∈ I(q) (in all
cases) and j ∈ I(q) if j > 0. If j = 0 then qk ≤ pk < Ck for all k ∈ [n] implies j = 0 ∈ I(q).
So i, j ∈ I(q).

We now prove the second part of the lemma by finding a slope vector s for (i, j) at q and a set
J ⊆ I(q) \ {i, j} so that p lies in the relative interior of Qkj(q;s;J) for every k ∈ [n]0 \ {i, j}.
It follows that an infinitesimal neighbourhood N of p in [F ] satisfies N ⊆Qkj(q;s;J) and so,
by Definition G.5, N ⊆Rij(q;s;J).

If j = 0, the slope vector s for (i, j) at q is uniquely defined and we let J = ∅. For every
k ∈ [n] \ {i}, we know pk > qk, so p lies in the interior of H+(q;k,0; 1) =Qk0(q;s;∅).

Now suppose j > 0. Firstly, qj > pj implies that p lies in the interior of H+(q; 0, j; 1) =
Q0j(q;s;J). So we stipulate 0 /∈ J (we need not specify whether 0 ∈ I(q)). Now observe that
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since qj − pj > 0, for any k ∈ [n] \ {i, j} we have p ∈H+(q;k, j;σ) if and only if qk−pk
qj−pj

≤ 1
σ

,
with p lying in the relative interior if and only if the inequality is strict. As p is generic we
may assume that qk−pk

qj−pj
/∈QS . Consider k ∈ I(q) \ {i, j,0}: there are three cases to consider.

If qk−pk
qj−pj

< 1
S

then p is in the relative interior of H+(q;k, j;S), which is Qkj(q;s;J) if we

stipulate that k /∈ J and sk
sj

= S. If 1
η+(σ)

< qk−pk
qj−pj

< 1
σ

for some σ ∈ QS then p is in the
relative interior of H+(q;k, j;σ)∩H−(q;k, j;η(σ)) which is Qkj(q;s;J) if we stipulate that
k /∈ J and sk

sj
= σ. Finally, if qk−pk

qj−pj
> S, then p is in the relative interior of of H−(q;k, j; 1

S
),

which is Qkj(q;s;J) if we stipulate that k ∈ J and sk
sj

= 1
S

. So we make the appropriate
specifications, for all k ∈ I(q) \ {i, j,0}, and recalling that we already knew si

sj
, fully specifies

s and J . Finally, consider 0 ̸= k /∈ I(q). Now qk =Ck < pk, so qk −pk < 0 and so qk−pk
qj−pj

< 1
S

,
implying p is in the relative interior of H+(q;k, j;S) =Qkj(q;s;J).

We have thus demonstrated that Rij(q;s;J) has (n− 1)-dimensional intersection with [F ].
That w(F ) =wij(q;s;J) follows immediately. Q.E.D.

It is useful to note at this point:

LEMMA G.24: Suppose p ∈ [P], that (i, j) is an orientation at p, that s is a slope vector
for (i, j) at p and that J ⊆ I(p) \ {i, j}, and write H := H(p; i, j; si

sj
). If J ̸= ∅ then there

exist some p′ ∈ [P], some slope vector s′ for (i, j) at p′ satisfying s′i
s′j

= si
sj

and some J ′ ⊆
I(p′) \ {i, j} such that (p′,s′)≺H,S (p,s) and wij(p′;s′;J ′) =wij(p;s;J).

PROOF: We first consider cases for which we show that there exists q ∈ R := Rij(p;s;J)
with q ≺H p. Because R is (n−1)-dimensional (Lemma G.10), we have q ∈ [F ] for some facet
F ⊆ H such that F has (n − 1)-dimensional intersection with R, and so such that w(F ) =
wij(p;s;J). Note that p′ := infH [F ] ⪯H q ≺H p. By Lemma G.23 there exist slope vector
s′ for (i, j) at p′ and set J ′ ⊆ I(p′) \ {i, j} such that wij(p′;s′;J ′) = w(F ) = wij(p;s;J).
Moreover p′ ≺H p implies (p′,s′)≺H,S (p,s).

Observe that if j = 0 and k ∈ J , then q := p− δek ∈Qk0(p;s;J) =H−(p;k,0; 1) for any
δ > 0. Similarly, if j > 0 and k ∈ J \ {0} and sk

sj
= 1

S
, then q := p − δek ∈ Qkj(p;s;J) =

H−(p;k, j; 1
S
) for δ > 0. In both cases, it is easy to see that q ≺H p and that q ∈Qlj(p;s;J)

for all other l ∈ [n]0, and so that q ∈ R if δ is sufficiently small. Additionally, if j > 0 and
0 ∈ J , then Q0j(p;s;J) =H−(p; 0, j; 1) =H+(p; j,0,1) and so qj > pj for q in the relative
interior of R (again, R is (n− 1)-dimensional by Lemma G.10); thus again there exists q ∈R
with q ≺H p. So the lemma is demonstrated for all these cases.

The remaining case is when j > 0 and 0 /∈ J and, for every k ∈ J \ {0} we have sk
sj

̸= 1
S

,

so sk
sj

> 1
S

. But Observation G.8 tell us that Rij(p;s;J) = Rij(p;s′;J \ {k}), where s′k
s′j

=

η−1( sk
sj
) and s′l

s′j
= sl

sj
for l ∈ I(p) \ {j, k}, and so that wij(p;s;J) =wij(p;s′;J \ {k}). Note

that s′ ≺S,
si
sj

s, so (p,s′)≺H,S (p,s). Q.E.D.

LEMMA G.25: Let H be parsimonious and let H ⊆H be a hyperplane of orientation (i, j)
with i > 0 and slope σ. There exist a point p ∈ [H] and slope vector s for (i, j) at p with
si
sj

= σ and mij(p;s) ̸= 0.
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PROOF: Since H is parsimonious, there exist nonzero-weighted facets of [H] lying in H .
By Lemma G.23, there exist prices p ∈ [H], slope vectors s for (i, j) at p with si

sj
= σ, and

J ⊆ I(p) \ {i, j}, such that wij(p;s;J) ̸= 0. Since facets are topologically closed and [H]
is bounded, there exists p satisfying these properties which is minimal with respect to ⪯H .
Fix such p; there are finitely many slope vectors s for (i, j) at p, and we pick s minimal with
respect to ⪯S,σ such that wij(p;s;J) ̸= 0 for some J ⊆ I(p)\{i, j}. So (p,s) is minimal with
respect to ⪯H,S such that wij(p;s;J) ̸= 0 for some J , and thus by Lemma G.24 wij(p;s;J) ̸=
0 if and only if J = ∅. This implies mij(p;s) ̸= 0 by Definition G.13. Q.E.D.

PROPOSITION G.26: HB =Hv .

PROOF: Fix a hyperplane H in either HB or Hv , of orientation (i, j) with i > 0. As Hv

is parsimonious, Lemmas G.16 and G.25 tell us that mij
B (p;s) =mij

v (p;s) ̸= 0 for some p ∈
H and slope vector s for (i, j) at p with si

sj
being the slope of H . By construction of the

multiplicity function, mij
B (p;s) ̸= 0 implies that HB contains H and mij

v (p;s) ̸= 0 implies
that Hv contains H . So H is in both HB and Hv . As both sets are unions of hyperplanes, they
are the same. Q.E.D.

We show in Proposition G.28 that wv =wB. The proof proceeds by induction on vertices and
slopes according to the partial order on pairs (p,s) introduced in Definition G.21, and makes
use of the following technical lemma.

LEMMA G.27: For any hyperplane H of H with orientation (i, j) and slope σ, the point
q := infH [H] is a vertex of [H], we have I(q) = {i, j}, and there is a unique slope vector for
(i, j) at p with si

sj
= σ.

PROOF: The hyperplane H is itself a trivial HIP H′, with only one facet. So we know q is a
vertex of [H′], and i, j ∈ I(q), by Lemma G.23. Clearly [H′]⊆ [H] and so q is a vertex of [H].
For any k ∈ [n]\{i, j}, q ∈ [H] implies qk = q+(Ck − qk)e

k ∈ [H], but qk ⪯H q, so q = qk,
that is, qk = Ck and k /∈ I(q). If 0 /∈ {i, j} then q ∈ [H] implies qλ = q + λ(bei + aej) ∈H

for all λ ∈R, and we can choose λ so that qλj is maximal such that qλ ∈ [H]. Then qλi =Ci or
qλj =Cj . But q ⪯H qλ implies that qj ≥ qλj and qi ≥ qλi . Thus q = qλ and so 0 /∈ I(q). The fact
that slope vectors are primitive imply that the slope vector for (i, j) at p is as stated. Q.E.D.

PROPOSITION G.28: We have wv(F ) =wB(F ) for every facet F of Hv .

PROOF: Recall Hv =HB by Proposition G.26. Let H ⊆Hv be a hyperplane of orientation
(i, j) with i > 0 and slope σ ∈QS . We will use induction on the partial order ⪯H,S to show that
wij

v (p;s;J) =wij
B (p;s;J) for every vertex p ∈H of [Hv] with i, j ∈ I(p), every slope vector

s for (i, j) at p with si
sj

= σ, and every J ⊆ I(p) \ {i, j}. The proposition follows because, by

Lemma G.23, if F ⊆ H is a facet of Hv = HB then wv(F ) = wij
v (p;s;J) = wij

B (p;s;J) =
wB(F ) for some such p,s, J .

Consider the base case. By Lemma G.27, the least point p in [H] is a vertex of [Hv], we
have I(p) = {i, j}, and the slope vector s for (i, j) at p with si

sj
= σ is unique. Thus, (p,s)

is minimal w.r.t. ⪯H,S . By Definition G.13 and I(p) \ {i, j}= ∅, as well as Lemma G.16, we
have wij

v (p;s;∅) =mij
v (p;s) =mij

B (p;s) =wij
B (p;s;∅).

Now suppose (p,s) is not the least pair, and assume the inductive hypothesis holds for all
pairs (p′,s′)≺H,S (p,s). For any J ⊆ I(p)\{i, j}, with J ̸= ∅, Lemma G.24 tells us that there
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exist p′,s′, J ′ such that (p′,s′) ≺H,S (p,s) and wij(p′;s′;J ′) = wij(p;s;J). By the induc-
tive hypothesis, wij

v (p;s;J) = wij
v (p;s′;J ′) = wij

B (p;s′;J ′) = wij
B (p;s;J). As mij

v (p;s) =
mij

B (p;s) by Lemma G.16, Definition G.13 now implies wij
v (p;s;∅) = wij

B (p;s;∅), which
completes the proof. Q.E.D.

G.3.2. The main theorem

We now prove that B is the unique bid collection, up to normalisation, satisfying Dv =DB.

LEMMA G.29: For any two bid collections B and B′, normalised in the same way but dis-
tinct, we have DB ̸=DB′ .

PROOF: Suppose DB =DB′ (so HB =HB′ ). The demand sets are independent of the nor-
malisation, and we may assume that the bid collections are normalised with respect to the same
bounding box [P] so that all roots r of bids are equal to τ(p) for some p ∈ [P]. Without
loss of generality, there exists a bid b = (r; t;m) in B that is not in B′. If b is unconditional
(so |I| = 1) and interested in good i, then at any generic prices p with sufficiently large pi,
demand of good i differs between B and B′, contradicting assumption DB =DB′ . Now sup-
pose b = (r; t;m) is interested in two or more goods, and i > j are the largest such goods.
Let m′ ̸=m be the multiplicity of the bid with root r and tradeoffs t in B′, if it exists, or let
m′ = 0 if no such bid exists. Fix the unique point p ∈ P for which r = τ(p) (so pk = rk for
k ∈ I(r) and pk = Ck for k /∈ I(r) ∪ {0}). By Lemma G.15 and mij

B =
∑

b∈Bmij
b , we have

mij
B (p; t) =m ̸=m′ =mij

B′(p; t). But DB =DB′ implies (HB,wB) = (HB′ ,wB′) and hence
mij

B (p; t) =mij
B′(p; t), a contradiction. Q.E.D.

PROOF OF THEOREM 3.1: Let B be the bid collection constructed as described in Ap-
pendix G.2. Propositions G.26 and G.28 state that (Hv,wv) = (HB,wB). By construction
of the single-minded bids in B, we have Dv(p) = DB(p) for some generic price p, so
Dv(p) = DB(p) follows for all p ∈ P by Proposition G.2. Lemma G.29 shows uniqueness
up to normalisation. Q.E.D.

PROOF OF COROLLARY 3.2: If v is a strong substitutes valuation, all hyperplanes in Hv

have slope 1, so we may set S = 1. Hence, all bids in the bid collection B have one-to-one
tradeoffs by construction. Q.E.D.

To prove Corollaries 3.3 and 3.7 we first show:

LEMMA G.30: Let v be a concave substitutes valuation, and suppose that there exists p
such that Dv(p) = {0} for all p≥ p. Let bid collection B satisfy DB =Dv . Then there are no
unconditional bids in B, and all bids in B are interested in good 0.

PROOF: First we see that Part (i) of Definition 3.6 for regular valuations is satisfied by v. Fix
i ∈ [n], let p ∈ P satisfy pi > pi and let q be generic and infinitesimally close to p. Let q′ ≥ p
be defined by q′j =max{qj , pj} for j ∈ [n]. By assumption Dv(q

′) = {0}. Moreover we can
move from q to q′ in steps by increasing the prices of goods j ̸= i in turn, and by genericity
of q we can assume that demand is unique after every such step. Because v is a substitutes
valuation, demand for good i weakly increases with every such step. But demand for good i
is zero at q′. So demand for good i is zero at q. This holds for any generic q close to p, so
we can conclude that xi = 0 for any x ∈Dv(p). The choice of i was arbitrary, so Part (i) of
Definition 3.6 holds.
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Recall we defined a bounding box with boundaries C and C chosen so that the relative
interior of every face of Lv meets the interior of [P]. Note that this property still holds if we
weakly decrease Ci and weakly increase Ci for some i ∈ [n]. So allow these bounds to depend
on λ, and notate the box [P]λ = {p ∈ P |Ci(λ)≤ pi ≤Ci(λ)}.

Algorithm 1 uses any such box [P]λ to generate a bid collection Bλ also satisfying Dv =
DBλ , but these bids are normalised differently. Every bid b= (r, t,m) ∈ Bλ except the uncon-
ditional bids (those for which |I|= 1) satisfies r = τ(p) where p is a vertex of [Lv]

λ, and so in
particular p ∈ Lv ∩ [P]. Here b is interested in good 0 if and only if pi <Ci(λ) for all i ∈ [n]
and b is interested in good i ∈ [n] if and only if pi >Ci(λ).

However, the bid collection B in the statement of the lemma is normalised as in Section 2.2.
By Lemma G.29, Bλ and B are the same up to normalisation of bids (see Lemma 2.2).

Suppose, for a contradiction, there exists b= (r; t,m) ∈ B interested in I with |I| ≥ 2 and
0 /∈ I . Fix such a bid. For every suitable [P]λ there exists bλ ∈ Bλ with the same demand, but
potentially a different normalisation. The corresponding bid bλ ∈ Bλ satisfies bλ = (rλ, t,m)
where rλ = τ(pλ) for some pλ ∈ [P]∩Lv . By definition of τ and by Lemma 2.2, thus, ti(pλi −
ri) = tj(p

λ
j − rj) for all i, j ∈ I , where pλi ≤C

i
for all i ∈ [n] and pλk =C(λ) for some k ∈ [n].

In principle the k such that pλk = C(λ) can depend on k. Let us set Ci(λ) = Ci +
λ
ti

for all
i ∈ I , and Ci(λ) =Ci otherwise, with C(λ) =C . Then, for all λ≥ 0, we know [P]λ satisfies
the required properties and so there exists pλ as above. Consider the λ = 0 case: let k ∈ I

satisfy p0k = Ck. Now pλ = p0 + λ
∑

i∈I
ei

ti
, as this vector has all the required properties. So

pλ = p0 + λ
∑

i∈I
ei

ti
∈ Lv for all λ > 0. But, by Corollary D.2, this implies that Part (i) of

Definition 3.6 does not hold. This is a contradiction to the first part of our proof. So no bid such
as b exists: every b ∈ B which is not unconditional is interested in good 0.

Finally, we show that there are no unconditional bids in B. Let prices p lie above p and also
above every root of every regular bid in B. Then DB(p) =Dv(p) = {0} by definition of B and
of p. But DB(p) is equal to the sum of the demands of unconditional bids for non-null goods,
because every regular bid demands 0 at prices above its root. Finally, there are no unconditional
bids for good 0 because B is parsimonious. So there are no unconditional bids in B. Q.E.D.

COROLLARY 3.3: For any substitutes concave valuation v, there exists a regular bid col-
lection B for any p ∈ P , such that DB(p) =Dv(p) for all p ≥ p, if there exists p such that
Dv(p) = {0} for all p≥ p.

PROOF: By Theorem 3.1, there exists a bid collection, B, such that DB = Dv . By
Lemma G.30, none of the bids in B are unconditional and all are interested in good 0, that
is, they have r0 = 0. We replace all non-regular bids in B with regular bids and show that the
resulting bid collection B̃ satisfies DB(p) = DB̃(p) for every p ≥ p. If a bid (r; t;m) ∈ B
satisfies ri >−∞ for all true goods i ∈ [n], it is already regular and thus included in B̃ with-
out modification. Otherwise, suppose the bid is interested in goods I ⊊ [n]0, so ti = 0 and
ri = −∞ for each good i ∈ [n]0 \ I . For each such good i, we now change ti to 1 and ri to
p
i
− 1 so that the bid prefers the null good to good i at any prices p≥ p, and include this mod-

ified bid in B̃. Moreover, the utility of receiving the goods that the bid was originally interested
is unaffected. Q.E.D.

PROOF OF COROLLARY 3.7: Let v be a regular substitutes valuation and B the bid collec-
tion with Dv =DB, which exists by Theorem 3.1. It is clear that a regular substitutes valuation
satisfies the condition of Lemma G.30, and so every bid in B is interested in good 0, and is not
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unconditional. By Lemma 2.2, every bid in B therefore has an unique normalisation. So, by
Lemma G.29, B is identical to the bid collection identified by Algorithm 1.

Now suppose there exists a bid b = (r; t;m) ∈ B which is not interested in i ∈ [n]. It is
not unconditional, so by construction (Algorithm 1) its root r satisfies r = τ(p), where p is a
vertex of [Lv] such that pi =Ci, the lower face of the bounding box. In particular p ∈ Lv .

But if we consider instead the bounding box with lower i-bound Ci−λ and all other bounds
the same, Algorithm 1 identifies the same bid (r; t;m), but now r = τλ(p′), where p′ is
a vertex of [Lv]

λ defined by the new bounding box, satisfying p′i = Ci − λ. Because r is
unchanged and the other bounds of the box are unchanged, we have p′j = pj for j ̸= i. So
p′ = p−λei ∈ Lv . We can perform this construction for all λ > 0. But this contradicts Defini-
tion 3.6 Part (i) by Corollary D.2. So no bid such as b exists in B: every bid in B is interested
in all goods, that is, it is regular. Q.E.D.
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