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Abstract

UK annual consumer price inflation rose rapidly from mid 2021, peaking over 9% in late
2022 after a series of essentially unpredictable shocks led to large forecast errors by the Bank
of England. A sequence of increasingly large same-sign 1-step-ahead forecast errors as the
forecast origin advances are most likely due to a sudden trend shift. We show that a small
number of impulse indicators acting as intercept corrections to set forecasts back on track can
be quickly tested for replacing by a broken linear or log-linear trend, illustrated by forecasting
the UK’s inflation.

JEL classifications: C2, C5, J3.
Keywords: Rapid Shift Detection, Trend Breaks, Impulse Indicators, Intercept Corrections, UK
Inflation.

1 Introduction

After a series of essentially unpredictable shocks from the ending of COVID-19 pandemic lock-
downs, supply chain disruption then the energy crisis caused by Russia’s invasion of Ukraine, UK
annual inflation measured by the Consumer Prices Index (here, including owner occupiers’ hous-
ing costs, CPIH) rose rapidly from mid 2021, peaking over 9% in late 2022. Figure 1 records
the annual inflation time series. Coroneo (2024) shows that standard forecasting benchmarks like
a random walk and a scalar autoregression had 1-quarter ahead root mean-square forecast errors
(RMSFEs) over 2019.Q1–2023.Q4 of 2.3% and 1.7% when the Bank of England inflation target
was 2%: see (Coroneo, 2024, Table 1).

A sequence of increasingly large one-sided 1-step ahead forecast errors as the forecast origin
advances suggests a trend change. Forecasts can be ‘put back on track’ by impulse indicators
acting as intercept corrections (ICs) at the forecast origin as the value of the impulse indicator is
the forecast error at that time point (see Clements and Hendry, 1996, although those authors use
step indicators as ICs). Such forecast errors could be due to large outliers or mis-measurements, a
step shift in the mean of the process, or a trend break. When accurate forecasting is the objective,
in addition to rapidly detecting a shift, a forecasting model for the post-shift period is required. To
isolate the source of the succession of such forecast errors, and so capture any sudden rapid shifts,
we use a deterministic-trend model and test if the first few significant ICs can be eliminated when
replaced by a broken linear or log-linear trend, as well as encompassing a step shift.

*We are pleased to acknowledge financial support from the Research Council of Norway, project 324472, on ‘Model
invariance and constancy in the face of large shocks to the Norwegian macroeconomic system’, and Nuffield College,
and helpful comments from Neil Ericsson. All calculations and graphs used PcGive (Doornik and Hendry, 2021)
and Ox Professional (Doornik, 2018). email: jennifer.castle@magd.ox.ac.uk, jurgen.doornik@nuffield.ox.ac.uk and
david.hendry@nuffield.ox.ac.uk
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Figure 1: UK CPIH annual inflation, 2010–2024.

Using impulse indicators to correct forecast origin mis-forecasts has three advantages. First,
since they act as one-off ICs, the next forecast commences from the forecast origin data value with
unchanged parameter estimates, which will lead to further noticeable forecast errors if there is a
location shift or trend shift, but not from one-off outliers or measurement errors which such ICs
fix. Second, successive large forecast errors reveal that the current model is inadequate and needs
updating, but the few new observations available from which to do so are usually insufficient for
adapting large systems. However, extending a deterministic-trend model by a broken linear or
log-linear trend is easily implemented. Finally, the adequacy of either of those trend extensions
can be tested by the resulting insignificance of the ICs and an encompassing test against the other
trend assumption: see Castle et al. (2024) for the underlying theory, and a discussion of other
approaches to break detection. Because the new and old trends will diverge increasingly, ever
larger forecast errors will result if not corrected. Consequently, despite having few (only 2 or
sometimes 3) post-break observations, the new trend can be estimated reasonably accurately and
so continue to forecast adequately until another shift occurs.

Since our (ex post) forecasts can be tested against the actual outcomes, we can evaluate the
approach for the recent surge in UK inflation, acting as an investigator who sequentially forecasted
many steps ahead. On finding a sequence of large, same-signed 1-step ahead forecast errors despite
correcting such errors using impulse indicators as intercept corrections, the forecaster seeks the
earliest date each sequence of ICs can be replaced by a broken linear or log-linear trend to improve
forecasts when a sharp upswing is in progress. Using monthly time series over 2010(1)–2024(3)
on the log of the (CPIH, we find a series of sudden trend shifts, each of which can be detected in
turn after a couple of large forecast errors, from which annual inflation forecasts can be derived.
The forecasts are respectably accurate till the following shift, and one set is able to predict 17
months ahead across peak inflation and its ensuing slowdown.

The structure of the paper is as follows. Section 2 briefly describes indicator saturation es-
timators, then Section 3 detects and forecasts after sudden shifts in annual UK inflation over
2021(3)–2024(3). Section 4 simulates rapid detection of a deterministic trend break and Section 5
concludes. The Appendix analyses the properties of forecasting after one large forecast error.
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2 Indicator saturation estimation

Indicator saturation estimators (ISEs) are designed to detect outliers, shifts in means, or breaks in
trends (inter alia) at any points in a time series without knowing their numbers, signs, magnitudes
or timings while retaining relevant explanatory variables. The approach adds an indicator variable
with the appropriate formulation for every observation in a sample of size T to the set of potential
regressors then searches for significant indicators (see Hendry and Doornik, 2014). Indicator
variables could be impulse indicators (IIS), 1j = 1 for t = j and zero otherwise for j = 1, . . . , T ;
step indicators, Sj = 1t≤j and zero otherwise (SIS); or trend indicators (TIS: see Walker et al.,
2019) which are the cumulation of step indicators:

τ ′
2 = (−1, 0, . . . , 0)...; τ ′

t = (−t+1,−t+2, . . . ,−1, 0 . . . 0)...; τ ′
T = (−T + 1, . . . ,−1, 0).

Thus, τdate denotes a trend indicator ending at date, t is the full sample linear trend t = 1, . . . , T ,
whereas tdate is a broken deterministic linear trend commencing at date. Also Sdate denotes a step
indicator ending in date, and sdate is a step shift commencing at date. All saturation indicators
(1j , Sj and τj) are designed to be zero in the forecast period.

A tree search algorithm with expanding and contracting block searches allows all indicators
to be investigated for possible significance: Castle et al. (2021) provide details of the search al-
gorithm. Given the resulting high dimensionality, selection must use very tight significance levels
α to control the probability of retaining irrelevant indicators, particularly if impulses, steps and
trends are searched jointly, denoted super-saturation (Ericsson, 2012). We set α = 0.0001 for
TIS, α = 0.005 for SIS, and α = 0.01 for impulse indicators to select these sequentially when
T = 130, using the results in Hendry and Johansen (2015).

3 Modelling and Forecasting UK Annual Inflation

The combination of the COVID-19 pandemic, supply chain disruption and the energy crisis caused
by Russia’s invasion of Ukraine led to several rapid upswings in UK inflation. Here we investigate
how quickly they could have been detected by modelling the log of monthly Consumer Prices
Index including owner occupiers’ housing costs (CPIH), denoted pt (source: Office of National
Statistics) with a data set over 2010(1)–2024(3). We follow a forecaster making 1-step ahead
forecasts as the forecast origin advances each month from 2021(3): this could simply be the first
of a multi-step sequence. The initial model explains the log-level pt by an intercept and linear
trend then using TIS selected at α = 0.0001 up to 2021(3) as recorded in equation (1) where all
trends have been scaled by 100:

p̂t = 4.45
(0.019)

[0.022]

− 0.27
(0.039)

[0.036]

τ2010(11) + 0.28
(0.028)

[0.024]

τ2011(4) + 0.083
(0.01)

[0.01]

τ2013(4) − 0.22
(0.03)

[0.03]

τ2014(10)

− 0.80
(0.19)

[0.25]

τ2015(4) + 0.70
(0.18)

[0.23]

τ2015(5) − 0.21
(0.02)

[0.01]

τ2016(2) + 1.04
(0.17)

[0.08]

τ2018(12)

− 1.3
(0.23)

[0.10]

τ2019(1) + 0.39
(0.07)

[0.04]

τ2019(4) + 0.071
(0.006)

[0.007]

t (1)

σ̂ = 0.20% R2 = 0.999 Far(7, 116) = 2.986∗ Farch(7, 121) = 0.78 T = 2010(1)-2021(3)

χ2
nd(2) = 2.22 FHet(20, 114) = 1.46 Freset(2, 121) = 0.07 FChow(1, 123) = 10.5∗∗
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There are no systematic differences between the conventional standard errors and HACSEs, so
only the former are reported below and used in calculating forecast standard errors.1 10 earlier
shifts in UK log price level since 2010 were detected at 0.01%, correcting the overall trend to 0.071
(i.e., 0.85% pa). Because all indicators are zero beyond their dates, the forecasts are p̂T+h|T =

β̂0 + β̂1(T + h), where for the forecast for 2021(4) from 2021(3), β̂0 = 4.45 and β̂1 = 0.071.

2020 2021

4.68

4.69

4.7

(a)
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(a)pt 
p̂T+1|T±2σ̂f 
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2020 2021
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4.7
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(b)
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p̂T+1|T±2σ̂f 
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4.68
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4.73 (d)

2021(9) from 2021(4) 
with log(t2021(3))

(d)pt 
p̂T+5|T±2σ̂f 
pt 
p̂T+5|T±2σ̂f 

Figure 2: Fitted & actual values for p̂t with 1-step ahead forecast for: (a) 2021(4) from 2021(3)
from (1); (b) 2021(5) from 2021(4) without I2021(4) (p̂T+1|T , dashed) and with (p̃T+1|T , dotted);
(c) 2021(6) from 2021(5) (i) with I2021(5) added to ((1): p̃T+1|T , dashed) and (ii) after adding
log(t2021(3)) ((2): p̂T+1|T , dotted); (d) forecasting by (2) to 2021(9) from 2021(4) with both error
bars and fans.

Figure 2(a) shows the fitted and actual values and the 1-step ahead forecast by (1) for 2021(4)
from 2021(3) and (b) 2021(5) from 2021(4) with 12021(4) = 0.0078 (p̃T+1|T : FChow(1, 123) =
29.0∗∗) and without (p̂T+1|T : FChow(1, 124) = 22.7∗∗). Although the interval forecasts (denoted
by bars reporting ±2σ̂f ) are not based on a congruent model, they offer a guide to the forecast
uncertainty assuming no further trend breaks. When 12021(4) is included, it acts as an intercept
correction (denoted by I2021(4)), so the next forecast commences from the 2021(4) outcome and
hence leads to a similar forecast error but via a large downward forecast as the upswing is in
progress, emphasising the trend shift.

Next, panel (c) shows forecasting 2021(6) from 2021(5) after also adding to (1) (i) 12021(5)
with t = 5.4 and (ii) the log of the broken linear trend log(t2021(3)), (which is zero initially as
t2021(3) starts at unity). The latter eliminates the two impulse indicators for 2021(4) and 2021(5)

1Coefficient standard errors shown in parentheses, with heteroskedasticity and autocorrelation consistent standard
errors (HACSEs) in brackets, σ̂ is the residual standard deviation, Far tests residual autocorrelation (see Godfrey, 1978),
Farch tests autoregressive conditional heteroscedasticity (see Engle, 1982), Fhet tests residual heteroskedasticity (see
White, 1980), χ2

nd(2) tests non-Normality (see Doornik and Hansen, 2008), Freset tests non-linearity (see Ramsey,
1969), and Fchow tests parameter constancy (see Chow, 1960) over the forecast period. One star indicates test signifi-
cance at 5%, two at 1%.
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and is recorded in (2) with an insignificant Chow test. Finally (d) extends the forecast horizon to
2021(9) with a multi-step RMSFE = 0.15% and FChow(5, 123) = 0.52, so (2) forecasts better out
of sample than the in-sample fit, despite the coefficient of log(t2021(3)) being estimated from just
2 observations.

p̂t = 4.45
(0.019)

− 0.27
(0.039)

τ2010(11) + 0.28
(0.028)

τ2011(4) + 0.083
(0.01)

τ2013(4) − 0.22
(0.03)

τ2014(10)

− 0.80
(0.19)

τ2015(4) + 0.70
(0.18)

τ2015(5) − 0.21
(0.02)

τ2016(2) + 1.04
(0.17)

τ2018(12)

− 1.3
(0.23)

τ2019(1) + 0.39
(0.06)

τ2019(4) + 0.071
(0.006)

t + 0.010
(0.003)

log(t2021(3)) (2)

σ̂ = 0.20% R2 = 0.999 Far(7, 116) = 2.98∗ Farch(7, 122) = 0.78 T = 2010(1)-2021(4)

χ2
nd(2) = 2.28 FHet(20, 114) = 1.46 Freset(2, 121) = 0.07 FChow(1, 123) = 0.52
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0.03 (c)

2021(6) from 2021(5) 
with log(t2021(3))

 ∆12pt ∆12 p̂T+1|T±2σ̂f 
 ∆12pt ∆12 p̂T+5|T±2σ̂f 
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0.04
(d)

2021(9) from 2021(4) 
with log(t2021(3))

 ∆12pt ∆12 p̂T+5|T±2σ̂f 

Figure 3: Actual and derived forecast values for ∆̂12pt and the 1-step ahead forecasts for:
(a) 2021(4) from 2021(3); (b) 2021(5) from 2021(4); (c) 2021(6) from 2021(5) after adding
log(t2021(3)) in (3); (d) forecasting 2021(9) from 2021(4) with log(t2021(3)).

Although we have used pt to test for and model changes in trend, the forecasts for annual
inflation are easily derived from the levels’ forecasts as ∆̂12pT+h|T = p̂T+h|T − pT+h−12, and
will have the same error bars as the log level, now re-centered on annual changes. The outcomes
are shown in Figure 3. The forecasts (a)–(d) are derived from those in Figure 2. That the first two
are below the previous outcome is all too common with equilibrium correction models.

5



3.1 The next break

We continue to follow the forecaster making 1-step ahead forecasts as the forecast origin now
advances from 2021(9). The model is (2) augmented by log(t2021(3)), now estimated up to 2021(9)
with σ̂ = 0.20%. As FChow(1, 128) = 12.38∗∗ when forecasting 2021(10) from 2021(9), a second
break has happened as seen in Figure 4(a). This is confirmed when next forecasting 2021(11) from
2021(10) in Figure 4(b). Adding ICs for 2021(10) and 2021(11) yields t-values of 3.5 and 5.3, but
forecasting 2021(12) from 2021(11) would deliver FChow(1, 128) = 44.8∗∗, confirming it is not
simply a step shift.

From Figure 4(b), the break probably started in 2021(8), so we created a broken linear trend
starting then, denoted t2021(8). Adding it to the model with the 2 impulse indicators made them
insignificant with an insignificant Chow test, and eliminating the indicators produced the outcome
in Figure 4(c) with FChow(1, 129) = 0.34 and σ̂ = 0.20%. Finally, Figure 4(d) shows multi-step
forecasts from 2021(11) to 2022(3), with FChow(5, 128) = 1.81 and RMSFE = 0.40%.

p̂T+1|T±2σ̂f 
pt 
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4.69
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4.71

4.72

4.73 (a)
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pt 

2020 2021 2022
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pt 
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p̂T+1|T±2σ̂f 
pt 
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pt 

2020 2021 2022

4.70

4.725

4.75
(d)

2022(3) from 2021(10)
with t2021(8)

p̂T+5|T±2σ̂f 
pt 

Figure 4: Fitted and actual values for p̂t and the 1-step ahead forecast for: (a) 2021(10) from
2021(9); (b) 2021(11) from 2021(10); (c) 2021(11) from 2021(10) after adding the linear trend
t2021(8) to (2); (d) forecasting from 2021(10) to 2022(3) with t2021(8).

3.2 Not another break!

Forecasting 2022(4) from 2022(3) leads to another significant failure with FChow(1, 133) = 63∗∗

as seen in Figure 5(a). By the time this shift could have been observed, Russia’s invasion of
Ukraine and the consequent energy crisis and fuel and food price rises had occurred, so such a
shift would not be a surprise, confirmed by another large error forecasting 2022(5) from 2022(4)
(Panel (b)) leading to I2022(4) & I2022(5) with ts of 7.9 and 8.0.
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p̂t = 4.45
(0.020)

− 0.27
(0.041)

τ2010(11) + 0.28
(0.029)

τ2011(4) + 0.083
(0.010)

τ2013(4) − 0.22
(0.032)

τ2014(10)

− 0.80
(0.20)

τ2015(4) + 0.70
(0.19)

τ2015(5) − 0.21
(0.02)

τ2016(2) + 1.04
(0.18)

τ2018(12)

− 1.04
(0.24)

τ2019(1) + 0.39
(0.068)

τ2019(4) + 0.071
(0.006)

t + 0.010
(0.001)

log(t2021(3))

+ 0.28
(0.035)

t2021(8) + 0.017
(0.002)

log(t2022(3)) (3)

σ̂ = 0.21% R2 = 0.999 Far(7, 126) = 3.53∗∗ Farch(7, 134) = 1.21 T = 2010(1)–2022(4)

χ2
nd(2) = 3.83 FHet(26, 121) = 3.25∗∗ Freset(2, 131) = 0.13 FChow(1, 132) = 0.04

Adding the next broken log-linear trend log(t2022(3)) eliminates the ICs and delivers the out-
come in (3) yielding FChow(1, 132) = 0.042 for 2022(5), shown in Figure 5(c), greatly reducing
the next forecast error, as FChow(1, 133) = 0.16 for 2022(6). The model continues to forecast
reasonably accurately through to 2023(9), which is 17 periods ahead, and although pt is slightly
overpredicted from 2023(7) leading to FChow(17, 133) = 3.96∗∗, the RMSFE is 0.47%, and the
tracking is close as seen in Figure 5(d).

p̂T+1|T±2σ̂f 
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 2022(5) from 2022(4) with 
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pt ~pT+1|T±2~σf 

pt 
p̂T+1|T±2σ̂f 
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2022(6) from 2022(5) 
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(c)pt 
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p̂T+h |T±2σ̂f 
pt 

2021 2022 2023
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4.8

4.85

2023(9) from 2022(4)

(d)
p̂T+h |T±2σ̂f 
pt 

Figure 5: Fitted and actual values for p̂t and the 1-step ahead forecast for: (a) 2022(4) from
2022(3); (b) 2022(5) from 2022(4); (c) 2022(6) from 2022(5) after also adding log(t2022(3)) to
(2); (d) forecasting from 2022(4) to 2023(9) by (3).

Figure 5(d) with the 17-steps ahead forecasts for 2022(5)–2023(9) confirms that medium-term
forecasts can be usefully accurate despite the most recent broken trend being estimated from just
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2 observations, obviously conditional on no new breaks occurring.2

3.3 Now we go back down

We continued the multi-step forecast to 2023(9) in order to check if the approach could capture
inflation first peaking then falling. The 17-steps ahead forecasts for pt show that is indeed possible.
Figure 6 plots all the sets of multi-step ahead forecasts for UK prices and Figure 7 for annual
inflation, ∆̂12pT+h|T . Although the model estimated up to 2022(4) has three broken trends all with
positive coefficients, nevertheless the annual inflation forecasts over 2022(5)–2023(9) capture the
first eight falls after the downturn in inflation. In a sense this is partly an artefact of the previous
year’s inflation being higher than the current one, but also requires accurate forecasts of pT+h|T .
As no intermediate 1-step ahead forecasts yielded significant errors, we assume the forecaster
continues with the same model.

3.4 A final shift

Although the error forecasting 2023(9) for 2023(8) is insignificant, when forecasting 2023(10)
from 2023(9) a significant forecast error occurs with FChow(1, 150) = 7.3∗ revealing another trend
break as the increases in pt slowed. Once again, a broken log-linear trend from 2023(10) produces
FChow(5, 150) = 1.1 over 2023(11)–2024(3) although fitted to just one non-zero observation as
shown in Figure 6. That coefficient estimate is -0.0105 (0.004), and estimated till 2024(3) is -0.011
(0.0013), hence the accurate forecasts.

pt 
p̂2021(9)|2021(4)±2σ̂f 
p̂2022(3)|2021(10) ±2σ̂f 
p̂2023(9)|2022(4)±2σ̂f 
p̂2024(3)|2023(10) ±2σ̂f 

2020 2021 2022 2023 2024

4.70

4.725

4.75

4.775
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4.825

4.85

4.875

4.90

pt 
p̂2021(9)|2021(4)±2σ̂f 
p̂2022(3)|2021(10) ±2σ̂f 
p̂2023(9)|2022(4)±2σ̂f 
p̂2024(3)|2023(10) ±2σ̂f 

Figure 6: Multi-steps ahead forecasts of pt over the inflation upsurge and fall from 2021(4)–
2024(3), spanning the four episodes shown by vertical lines with ellipses highlighting the breaks.

2After 3 broken trends to 2022(3), a forecaster might have reselected by TIS, and the resulting model would have
forecast slightly more accurately than (3).
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The Bank started raising interest rates from 0.1% in February 2022, continuing to raise in
small steps till 5.25% in August 2023, yet our accurate 17 month ahead (albeit ex post) forecasts
to 2023(9) were made in 2022(4) prior to most changes. Had the method in Castle et al. (2024)
been available before 2022(4), the same forecasts would have been made: one wonders what the
MPC would have made of them. The possible implications range from ‘the impacts of interest rates
on inflation are slow and small’; ‘the inflationary surge was mainly global energy price driven, so
domestic policy had little effect’; to ‘interest rate increases slowed a linear trend price increase
to a log-linear, happening to match our forecasts’. Hendry and Muellbauer (2024) estimate the
impacts on UK inflation in 2022 of import price inflation, energy shortages and price rises of 170%,
suggesting they accounted for about 3/4 of the peak 9% rise in CPIH, and all these influences
dropped considerably in 2023 so UK inflation rose more slowly.

Figure 7 collects our whole period multi-step ahead monthly forecasts and outcomes over
2021(4)–2024(3) for annual inflation (∆12pt), including the large forecast errors that prompted
the additions of broken trends (two vertically-aligned error bars are without and with ICs).

2020 2021 2022 2023 2024

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10  ∆12pt ∆12
~p2024(3)|2021(4)±2~σf ∆12 p̂2024(3)|2021(4)±2σ̂f 

Figure 7: Multi-steps ahead forecasts and outcomes over 2021(4)–2024(3) for ∆̃12pT+h|T

(dashed) & sub-period forecasts ∆̂12pT+h|T (dotted) shown with error bars.

An alternative comparison is with how the basic model would have forecast in the absence of
our approach to rapidly correcting after shifts. Figure 8 records whole period outcomes using 12
month ahead forecasts for first three episodes and 6 and 5 months ahead for last two. Forecasting
beyond the next break naturally leads to significant forecast errors but that could not be known
till after the shifts and Figure 7 highlights the advantages of then rapidly correcting from the
initial 1-step ahead large forecast errors. Moreover, not correcting would have been a very bad
strategy, and although we have used the deterministic trend equation as the illustration in Figure
8, similar patterns of failure would have occurred for the typical benchmarks that Coroneo (2024)
considered.
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Figure 8: 12 month ahead forecasts for first three episodes and 6 & 5 months ahead for last two,
immediately after shifts (vertical lines) (i) without broken trends (green, dotted lines with symbols,
always very poor) and (ii) with broken trends (poor after first 2 breaks).

4 Simulating rapid detection of a deterministic trend break

We undertake a Monte Carlo simulation to evaluate the detection and forecast performance of
the real-time forecasting procedure, both under the null of no break and under the alternative
of a break. In the simulations, there are T = 80 in-sample observations and H out-of-sample
observations to evaluate forecasts. Impulse indicators are denoted Ij , and trend indicators are
denoted τj ending at time j, whereas t is a linear trend for t = 1, . . . , T +H . All the simulations
are based on M = 10000 replications.

The DGP is given by:

y = µ1+ λτT + ρt+ ϵ, ϵ ∼ IN
[
0, σ2ϵ I

]
(4)

where τT = (−79,−78, . . . ,−1, 0, 0, . . . , 0)′ but the full sample trend is t = (1, 2, . . . , T +H)′.
There is a break in trend that occurs at observation T = 80, forecasting recursively over the
next H = 5 periods. We set the intercept µ = 5.5, the end-of-sample trend ρ = 0.05, and
σϵ = 0.025, varying λ to give different magnitude trend breaks. DGP coefficients have been
chosen to correspond to values that we may observe for annual growth rates when the regressand
is in logs so the growth rate after T is ρ; up to T the growth rate is λ+ ρ.

We estimate the model recursively for t = 1, . . . , T + h over h = 1, . . . 5:

yt = β0 + β1t+

5∑
j=1

βιj1T+j + νt (5)

and record the significance of the impulse indicators’ coefficients. As the impulse indicators are
orthogonal and dummy out the final observations, estimating the model with 5 impulse indicators
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over t = 1, . . . , T + 5 is equivalent to recursively testing the individual indicators as the window
increases from T + 1 to T + 5.

Figure 9 records the proportion of replications in which the impulse indicators are significant
at a 1% significance level as the sample is increased from t = 1, . . . , T + 1 to T + 5. When
λ = 0, the trend in the forecast period is the same as the in-sample period, so is under the null of
no break. When λ = −0.025 the trend initially has a growth rate of 2.5% which then increases to
5% at T + 1 onwards. At the extreme of λ = −0.1 the trend growth rate is initially falling at 5%
before reversing and increasing at 5% at T + 1. The ratio of λ to σϵ, denoted λ∗, determines the
detectability of shifts.

T+1 
T+2 
T+3 
T+4 
T+5 

0.1
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0.3

0.4

0.5
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α=1%

λ (break size) →0-0.05-0.10-0.15 0.05 0.10 0.15

T+1 
T+2 
T+3 
T+4 
T+5 

Figure 9: Proportion of impulse indicators that are significant at 1% for a break in trend (4).

After just two observations the retention rate of the impulse indicators increases rapidly as the
trend break gets larger, and by 4 or 5 observations, a break of almost any size is easily detected by
the impulse indicators. When there is no break, the impulse indicators are retained at close to the
nominal significance level. Detection rates are essentially symmetric in the sign of λ. A less noisy
DGP (lower σϵ) will increase the retention probability and vice versa for a given λ magnitude.3

We next test at 1% for the significance of including a linear or log-linear trend in the model.
Recursive estimation over t = T + 2, . . . , T + 5 (commencing in T + 2 to give one post-break
in-sample observation at T + 1) is applied to:

yt = β0 + β1t+ β2tT+h +
5∑

j=2

βιj1T+j + νt (6)

yt = β0 + β1t+ β2 log(t
∗
T+h) +

5∑
j=2

βιj1T+j + νt (7)

3An equation standard error of 2.5% is similar to that for UK GDP. Simulation results for alternative values of σϵ

are available on request.
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where tT+h = h for h = 1, . . . ,H and 0 for 1, . . . , T , and log(t∗T+h) = log(tT+h + 1) for
h = 1, . . . ,H and 0 for 1, . . . , T . We test for the significance of the last ICs (dropping 1T+1 to
avoid perfect collinearity with the trend) using an exclusion test.

Figure 10 records the results, where panel (a) records the retention rate of the included trend,
panel (b) records the average T-value of the trend (using T as a ‘t’ value given the other uses of
‘t’) and panel (c) records the retention rate of the impulse indicators when the trend is included.
The probability of retaining either the linear or log-linear trend increases rapidly as the break size
increases and there is little difference between the two trend specifications. Under the null of no
break the retention probabilities are close to the chosen significance level. The trends are highly
significant, even after just two observations, if the break is moderately large, shown by the average
T−values, and the linear trend dominates the log-linear trend as the DGP is a linear trend. The
log-linear trend does a good job of approximating the trend, but its misspecification is revealed by
the retention of impulse indicators (panel (c)) which increases over the longer forecast horizon as
the log-linear trend diverges from the linear trend. Under the correctly specified linear trend the
impulse indicators are retained in addition to the trend for 1% of the draws, the significance level
of the exclusion test.
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Figure 10: (a) the proportion of trends that are significant at a 1% significance level; (b) the
average T-statistic of the trend; (c) the proportion of replications in which the p-value of the
exclusion test over the ICs is less than 0.01, i.e. the number of draws in which ICs are significant
in addition to the trend. At T + 2, the exclusion test applies to just IT+2; at T + 3 the joint test is
for IT+2 and IT+3, and for T + 5, tests for the joint exclusion of IT+2, . . . , IT+5.

The forecast performance of the approach is assessed by comparing five alternative forecasting
approaches. These include (i) ignoring the break, i.e. (5) with βιj = 0, ∀j, denoted ‘unadjusted’;
(ii) using an IC for the last in-sample observation to intercept correct at the forecast origin (i.e. not
extrapolating the break forward), denoted ‘IC’;
(iii) using a linear trend from the forecast origin, i.e. (6) with βιj = 0, ∀j;
(iv) using a log-linear trend from the forecast origin, i.e. (7) with βιj = 0, ∀j; and finally
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(v) using a step indicator from the forecast origin T∗ extrapolated forward.
The forecasting exercise undertakes a series of 5 dynamic forecasts. The models are estimated

over t = 1, . . . , T∗ and forecasts are produced for T∗ +1, . . . , T∗ +5. All models are identical for
the initial recursion as the break in trend occurs at T + 1. Thus the models are estimated over t =
1, . . . , T+1 and dynamic forecasts are produced for T+2, . . . , T+6 = T∗+1, . . . , T∗+5. In this
recursion there is just one observation to estimate the linear trend, the log-linear trend and the step
shift. The models are then estimated over t = 1, . . . , T +2 and dynamic forecasts are obtained for
T+3, . . . , T+7, etc. up to an in-sample period t = 1, . . . , T+4 with forecasts over T+5, . . . , T+
9. Mean forecast errors (ME) and root mean square forecast errors (RMSFE) are recorded across
the 5 dynamic forecasts for each forecast horizon for λ equal to (−0.1,−0.05,−0.0375,−0.025)
so only two break examples with |λ∗| ≥ 2 when σϵ = 0.025.
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Figure 11: RMSFEs for a sequence of 5 dynamic forecasts commencing at T∗ = T, . . . , T + 4,
where the break in linear trend of magnitude λ occurs at T + 1.

The RMSFE results are reported in figure 11 for the four different break magnitudes.4 When
the break is large, just one observation is sufficient to estimate the linear trend and correct the
forecasts, with the linear trend dominating the forecast performance of breaks of λ = −0.05 or
larger in absolute value. Even if the break is of moderate size, the linear trend dominates after just
2 observations. The mis-specified log-linear trend does not remove the bias but it is still effective
at reducing RMSFE relative to an unadjusted model. The intercept correction to set the forecasts
back on track slightly worsens the forecast error relative to doing nothing. The step shift is the
wrong model, but could be detected recursively. Under the null of no trend break (λ = 0) there
is a cost to using the linear trend in RMSFE, particularly after just one observation, which is
still present after 4 observations, although the costs are small and averaging across the linear and
log-linear trend would mitigate this when the break form was uncertain.

4The RMSFE scale in figure 11 differs across break sizes to highlight differences between models. MEs and results
for a range of other break sizes are available on request.
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5 Conclusion

A sudden unanticipated upsurge in a variable will usually create a sequence of large same-sign
1-step ahead forecast errors as the forecast origin advances. The procedure described in this paper
is as follows.
1] Once significant 1-step ahead forecast errors are detected, add impulse indicators acting as
intercept corrections (ICs) to the model. The ICs ensure that the forecasting model is unchanged,
hence maintain the previous trend, so rapidly reveal departures from any new upswing, and help
discriminate trend breaks by a test from location shifts, outliers or measurement errors (which ICs
can correct).
2] After two (or perhaps three) large increasing same sign 1-step ahead forecast errors have led
to a significant sequence of ICs, a broken linear or log-linear trend can be estimated and tested
for its adequacy by replacing the impulse indicators, as well as tested against step shifts and the
alternative trend formulation.
3] Despite being selected from just one to three observations, the new broken trends can continue
to forecast acceptably accurately further ahead, until another trend break occurs.

An application to the upsurge since 2021 in UK annual inflation illustrated this last possibility.
The log level of the monthly CPIH was modelled by first applying trend-indicator saturation (TIS)
at a 0.01% significance to an equation with an intercept and linear trend fitted to the historical data
from 2010(1) to 2021(3). 1-step forecast errors in 2021(4) and 2021(5) produced significant ICs,
which a log-linear trend starting in 2021(3) replaced and could forecast accurately five months
ahead. Then 1-step forecast errors from another break in 2021(8) were handled by a linear trend,
forecasting till 2022(3), when the energy crisis occurred with large forecast errors in 2022(4) and
2022(5). Replacing those by a log-linear trend commencing in 2022(3) enabled 17-steps ahead
forecasting from 2022(5) to 2023(9) as annual inflation first peaked then fell. Modelling the final
shift from 2023(10) again proved usefully accurate till our sample end, but would certainly fail as
annual inflation stabilized. The 4 essentially unpredictable trend shifts are clearly visible in Figure
7, and were followed by significant forecast errors, but we experienced only seven large errors
overall when rapidly detecting breaks, rather than long periods of systematic forecast failure.

Such an approach could potentially quickly detect sudden increases and ‘tipping points’ at the
start of their evolution, acting both as an early-warning system and providing a glimpse of the road
ahead, albeit without knowing when the next failure will occur. When the model and data do not
have a trend but a new one commences with a break, a similar approach is effective, but now not
including impulse indicators reveals the shift more quickly because otherwise ICs can improve
forecasts sufficiently to hide the change. A forecasting agency could publish the IC forecast but
record the one without ICs and switch when a new broken trend is detected.

Appendix: Forecasting after one large forecast error

Castle et al. (2024) analyse forecasting after trend breaks based on two or three observations
and show its feasibility: here we consider doing so after a single post-break observation. Let
ε̂T+1|T = yT+1 − ŷT+1|T be a large 1-step ahead forecast error which happens following the
deviation of a new log-linear trend from a previous linear trend at time T where:

yT+1 = δ (T + 1) + ψ log
(
t{t>T}

)
+ εT+1 (8)

when t{t>T} is a linear trend equal to (t− T + 1) for t ≥ T and zero otherwise, and εt ∼
IN

[
0, σ2ε

]
.

Since the break is not known at T , the next unadjusted forecast is (denoted by ̂ ):

ŷT+1|T = δ̂ (T + 1)
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with the forecast error:

ε̂T+1|T =
(
δ − δ̂

)
(T + 1) + ψ log (2) + εT+1 (9)

as t{t>T} = 2 at T + 1. When E[δ̂] = δ, neglecting the variance component from (δ − δ̂) as
trend coefficient estimates have variances O

(
T−3

)
, then E[ε̂T+1|T ] = log(2)ψ and V[ε̂T+1|T ] =

E[(ε̂T+1|T − E[ε̂T+1|T ])
2] = σ2ε with a mean-square forecast error (MSFE) of σ2ε + (log(2)ψ)2.

The next forecast is made after adding the IC I{T+1} = ε̂T+1|T 1{T+1} to set the forecast back
on track at the origin, where from (9), the fitted value at T + 1 becomes (denoted by ˜ ):

ỹT+1|T = δ̂ (T + 1) + I{T+1} = δ (T + 1) + ψ log (2) + εT+1 = yT+1

so:
I{T+1} =

[
(δ − δ̂) (T + 1) +ψlog(2) + εT+1

]
1{T+1}

and hence I{T+1} ‘captures’ the trend shift ψlog(2), which is the source of the large forecast error.
However, since 1{T+1} = 0 at T + 2, adding it still leads to the next 1-step forecast:

ỹT+2|T+1 = δ̂ (T + 2)

and hence another large forecast error, as seen above.
If instead, the forecaster had added the broken log-linear trend log

(
t{t>T}

)
on the assumption

that was the problem and anyway acts as a damped trend for forecasting the log price level (see
e.g., Gardner and Mckenzie, 1985), then its coefficient would be I{T+1} scaled by log (2) with
I{T+1}/ log (2) = ψ so:

yT+2|T+1 = δ̂ (T + 2) + ψ log (3)

leading to:

εT+2|T+1 = δ (T + 2) + ψ log (3) + εT+2 − δ̂ (T + 2)− ψ log (3)

=
(
δ − δ̂

)
(T + 2) +

(
ψ − ψ

)
log (3) + εT+2

where:
E
[
ψ − ψ

]
= ψ − E

[
I{T+1}

]
/ log (2) = 0

so now E
[
εT+2|T+1

]
= 0, with a MSFE of σ2ε . For the final break in our sample, I2023(10) =

ψ = −0.0073 (0.003) whereas the log-linear trend coefficient was estimated as −0.0105 (0.004)
which is I{2023(10)}/ log (2). The resulting MSFE was approximately σ̂2ε and stayed at that level
for the remainder of the forecast horizon. Two caveats are that the data process needs to have an
approximate log-linear trend after the break, and no further breaks occur. Otherwise, if the large
forecast error is due to an outlier, measurement error or step shift, forecasts could be worse after
the IC, hence the need for two forecast errors to test the break type.
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