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 Miscellanea 563

 tionally on the set (ii). Now whenever yia + Yib * 1, the contribution of the ith pair to (i) is fixed. Hence,
 the conditional distribution just mentioned is equivalent to that of R = number of pairs (0, 1) condi-
 tionally on the observed value of M = number of pairs (0, 1) or (1, 0).

 Now a simple calculation from (1) and (2) shows that

 Pr(Yia = 0, Yib = I YIYa+ Yib = 1) = Vr/(1+/r) = 0, say. (3)
 Therefore R, conditionally on the observed value of M, has a binomial distribution

 Pr(R = r|M = m) = (r) Or(I-O)m-r. (4)

 In particular the optimum test of the null hypothesis Vt = 1, 0 = 2 is McNemar's test, and confidence
 intervals for 0 and hence for Vt are obtained in the usual way for a binomial parameter. The significance
 test can be looked on as the very special case of Haldane & Smith's (1948) test for a serial order effect
 obtained when each series contains just two items.

 Example. Mosteller (1952) illustrated the test on an experiment in which each of 100 subjects used
 both of two drugs A and B, the response being a dichotomy 'not-nausea', 'nausea' (0 and 1, say). 81
 subjects never had nausea, i.e. gave the observation (0, 0), 9 subjects gave (1, 0), i.e. had nausea with A
 but not with B, 1 subject gave (0, 1) and 9 gave (1, 1). The significance test of the null hypothesis that the
 drugs are equally liable to induce nausea amounts to testing whether a division of 10 trials into (9, 1) is
 significantly extreme in a binomial distribution with chance L.-The exact significance level in a two-sided

 test is 11/512 0-021; as an approximation to this, we get from a X2 test, corrected for continuity, that
 significance is attained at very nearly the 0-025 level. A table of 95 % confidence limits for the binomial
 probability (Hald, 1952) gives (0.003, 0.445) as the limits for 0 and hence the odds factor Vt is between
 1/300 and 4/5.

 Tests and interval estimates comparing the values of ?fr in different experiments can be done by familiar
 techniques for binomial variates.

 3. Test of agreement between a sequence and a set of probabilities. Let Y1,..., Yn be mutually indepen.
 dent random variables each taking the values (0, 1) and let Pl,... p Pn be a given set of numbers, 0 < Pi < 1.
 Suppose that it is required to use observations on Y?,..., Y, to test the hypothesis that

 Pr (Yi = 1) = pig (i = 1, *--,,n)- (5)

 For example, a weather forecaster might put forward each day a number purporting to be the proba-
 bility that it will rain the following day. It might then be required to test whether the observed occur-
 rences of rain are consistent with these probabilities.

 If n is large, we may group the trials into sets each with nearly constant pi; then the observed propor-
 tion of l's in each set can be compared with the correspondingpi. Let n be too small for this test to be used.

 One method of deriving a small sample test, when special alternatives to (5) are not available, is to
 consider a family of probabilities derived from (5). This family is characterized by a continuous para-
 meter /? and

 log {Prfi(Yi = 1)/Prf(Yi = 0)} = 13log{pi/( -PM)}. (6)

 The null hypothesis (5) corresponds to /3 = 1. If 3 > 1, the suggested probabilities pi show the right general
 pattern of variation, but do not vary enough. If 0 < 3 < 1, the suggested probabilities vary too much.

 If / < 0, the pi vary in the wrong direction and if . = -1, the pi are the complements of the true
 probabilities.

 The log likelihood under (6) of an observed series Yi, .y. *, Y is

 y- EYi logpi +, E (I 1- Y) log (I 1-Pi) -E log {pR + ( 1- PJflJ (7)
 Hence, the sufficient statistic is obtained by scoring

 = flog (2pi) when Yi=1;
 log[2(1-pi)] when Yi=0, (8)

 and by considering a total score X = E Xi. The factor 2 is incluLded to make the expected score positive
 and to arrange that an event of probability 2 scores 0.

 Under the null hypothesis I = 1,

 E1(X) = log2+Epi logpi+E(I-p)log(I-pi)g (9)

 V,(X) = p,( 1-pJ){log [p,/( 1_p])),2.(1Q
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 564 Miscellanea

 Provided that n is not very small and that none of the pi is near 0 or 1, the distribution of X is nearly
 normal.

 In principle it would be possible to calculate confidence intervals for f, from an observed value X = x.
 If x significantly exceeds (9), this is evidence that ,i> 1.

 Example. Suppose that there are 16 trials, 8 of which have outcome 1 and 8 have outcome 0. Let the

 pi corresponding to the zero observations be 0 1, 0 1, 0 2, 0.2, 0 4, 0 5, 0*6, 0 7, and corresponding to the
 unit observations 0 3, 0.3, 0 5, 0-6, 0.6, 0-8, 0 9, 0 9.

 Thus the score for the first observation recorded as 0 is log [2(1 -pi)] = log 1-8 = 0-255, and the score
 for the first observation recorded as 1 is log (2pi) = log 0*6 = - 0 222. We find that the total observed
 score x = 1*106 and that under the hypothesis f, = 1, equations (9) and (10) give

 E1(X) = 1*030, V1(X) = 0*785,

 so that there is excellent agreement with expectation. Under the hypothesis , = 0, i.e. that l's occur

 randomly with constant chance i, we find

 Eo(X) = n log 2 + J log [pi( 1-pi)] =-1- 329,
 VO(X) = JY_{log [pl/(1 -pf)]}2 = 1 314.

 The observed value differs significantly from EO(X) at the 5 % level. Thus the data support the idea that
 I's do not occur with constant chance i and are in excellent agreement with the suggested probabilities.

 The family (6), on which the test just described is based, is especially appropriate when the sequence
 {pi} is known to be correct at and near p = a but possibly incorrectly spread around p = . Thus we may
 call the test based on (9) and (10) a test for spread. A natural generalization is to replace (6) by

 log {Prf,#(Yi = 1)/Prf,ac((Yt = 0)} = 8 log {pi/( 1-pi)} + a, ( 11)
 the null hypothesis being that,8 = 1, a = 0. The pair of sufficient statistics are X, as defined previously,
 and Y = E Yi. Under the null hypothesis, X, Y are nearly jointly normally distributed with the mean
 and variance of X given by (9) and (10) and with

 E1(Y) = Y-p2, V1(Y) = -pi(1-pi), (12)

 01(X, Y) = SPi(I 1 pi) log [Pi/( 1 -P (13)
 Note that if the pi are symmetrically arranged about 1, X and Y are uncorrelated.

 A test for bias ignoring spread will be based on Y alone, i.e. solely on the observed total number of l's.
 If both bias and spread are of interest, it is necessary to specify the relative importance to be attached to
 each, if an optimum small-sample procedure is to be found. Since it is rarely possible to do this, a sensible
 practical approach is to find the observed values x and y and to see whether

 (x - E1(X), y - E1( Y)) (V1(X) C1(X, Y) -1 x - E1(X) (14)
 vi1(X, Y) V1(Y) y - E1(Y))

 is significantly large in the x2 distribution with 2 degrees of freedom. The expression (14) is, except for
 a factor 1, the exponent in the bivariate normal distribution of X and Y; it is the likelihood ratio statistic
 for testing the hypothesis that X, Y have the bivariate normal distribution (9), (10), (12) and (13), against
 the hypothesis that X, Y have arbitrary means, but the same covariance matrix as under the null
 hypothesis. This, of course, does not allow for the fact that the covariance matrix varies in a determined
 way with the parameters a and ft. However, the determination of the correct likelihood ratio criterion
 requires the maximum likelihood estimation of a and fi, which is tedious.

 Example. Consider the data that were analysed previously. We have that the observed value of Y is
 y = 8 and that E1( Y) = 7.7, V1( Y) = 2-930, C0(X, Y) = - 0090. Therefore, the observed value of
 Y, as well as that of X, agrees well with its expectation under the suggested scheme of probabilities and
 the need for a combined test hardly arises. The formal details of such a test are that

 (1 106- 1 030, 8-7 7) 0-785 - 0-90 -1 {1 106-1-0308 (15)
 (- 0 090 2.930/ 8-7-7 (

 is to be tested as X2 with 2 degrees of freedom. The value of expression (15) is 0 01: a value smaller than this
 would arise by chance only about 1 in 100 times.

 There are further problems connected with the general situation discussed here. First, the same set
 of observations can be consistent with several alternative sequences of probabilities and it may be
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 Miscellanea 565

 required to consider which sequence is preferable. It seems reasonable to prefer that sequence of proba-
 bilities for which the information in Shannon's sense is a minimum, for this implies minimum uncertainty
 concerning the outcome of the realized sequence. According to (9), this amounts to preferring the proba-
 bilities for which E1(X) is a minimum. Secondly, it happens in some applications that the probabilities

 pi are not given, but have to be estimated from data by fitting a particular type of model, often to the
 same data with which goodness of fit is to be tested. In such cases, the most satisfactory test of goodness
 of fit is likely to be obtained by fitting a model containing additional parameters and testing estimates of
 the additional parameters for significance from zero. The approach of the present section is relevant only
 when there are available no special forms of alternative specific to the problem.
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 A note on a series solution of a problem in estimation*

 BY IRWIN GUTTMAN

 University of Alberta and Princeton University

 1. INTRODUJCTION AND SUMMARY

 If t(x) is a sufficient statistic for the family of probability functions { 9 I OeQ} defined over the real line,
 and iff(x) is an unbiased estimator of a real valued function of the parameter, say g(O), then it is well

 knowln that the function h(t) = E{f(X) I t3

 is an unbiased estimator of g(O), and that it has smaller variance and risk (for strictly convex loss func-

 tions) thanf(x), unless of coursef(x) = h(t(x)) almost everywhere {I x. Further, if t is also a complete
 statistic, then h(t) is the unique Uniformly Minimum Variance (UMV) unbiased estimate of g(O).

 The above holds for continuous and discrete probability functions gx. We discuss here the case where
 9' are discrete probability distribution functions defined on the real line, with probability densities

 p(x), where x = 0, 1, 2,....
 Under certain regularity conditions given in ? 2, a method of determining h(t), without considering

 unbiased estimatorsf(x) of g(O) at all, is given. This has the feature, then, of avoiding the evaluation of
 conditional expectations. The method also allows for a solution of a problem raised by Girshick, Mosteller
 & Savage (1946). This is discussed in ? 3, where some examples are given to illustrate the theorem of ? 2.
 It is interesting to note that a special case of the method has been used by Lehmann & Scheff6 (1950) to
 prove completeness of some statistics.

 * Prepared in connexion with research sponsored by the Office of Naval Research.
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